Видеоадаптеры: принципы работы, типы, сравнительная характеристика

адаптеры, классификация, особенности строения и работы

Видеоадаптеры: принципы работы, типы, сравнительная характеристика

Устройство, которое называется видеоадаптером (или видеоплатой, видеокартой), есть в каждом компьютере. В виде устройства, интегрированного в системную плату, либо в качестве самостоятельного компонента платы расширения.

функция, выполняемая видеокартой, это преобразование полученной от центрального процессора информации и команд в формат, который воспринимается электроникой монитора, для создания изображения на экране.

Монитор обычно является неотъемлемой частью любой системы, с помощью которого пользователь получает визуальную информацию.

Стандартные типы видеоадаптеров

MDA (Monochrome Display Adapter — монохромный адаптер дисплея) — простейший видеоадаптер, применявшийся в первых IBM PC.

Работает в текстовом режиме с разрешением 80×25 (720×350, матрица символа — 9×14), поддерживает пять атрибутов текста: обычный, яркий, инверсный, подчеркнутый и мигающий. Частота строчной развертки — 15 Кгц.

Интерфейс с монитором — цифровой: сигналы синхронизации, основной видеосигнал, дополнительный сигнал яркости.

HGC (Hercules Graphics Card — графическая карта Hercules) — расширение MDA с графическим режимом 720×348, разработанное фирмой Hercules.

CGA (Color Graphics Adapter — цветной графический адаптер) — первый адаптер с графическими возможностями. Работает либо в текстовом режиме с разрешениями 40×25 и 80×25 (матрица символа — 8×8), либо в графическом с разрешениями 320×200 или 640×200.

В текстовых режимах доступно 256 атрибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атрибут мигания), в графических режимах доступно четыре палитры по четыре цвета каждая в режиме 320×200, режим 640×200 — монохромный.

Вывод информации на экран требовал синхронизации с разверткой, в противном случае возникали конфликты по видеопамяти, проявляющиеся в виде «снега» на экране. Частота строчной развертки — 15 Кгц.

Интерфейс с монитором — цифровой: сигналы синхронизации, основной видеосигнал (три канала — красный, зеленый, синий), дополнительный сигнал яркости.

EGA (Enhanced Graphics Adapter — улучшенный графический адаптер) — дальнейшее развитие CGA, примененное в первых PC AT. Добавлено разрешение 640×350, что в текстовых режимах дает формат 80×25 при матрице символа 8×14 и 80×43 — при матрице 8×8.

Количество одновременно отображаемых цветов — по-прежнему 16, однако палитра расширена до 64 цветов (по два разряда яркости на каждый цвет). Введен промежуточный буфер для передаваемого на монитор потока данных, благодаря чему отпала необходимость в синхронизации при выводе в текстовых режимах.

структура видеопамяти сделана на основе так называемых битовых плоскостей — «слоев», каждый из которых в графическом режиме содержит биты только своего цвета, а в текстовых режимах по плоскостям разделяются собственно текст и данные знакогенератора. Совместим с MDA и CGA. Частоты строчной развертки — 15 и 18 Кгц.

Интерфейс с монитором — цифровой: сигналы синхронизации, видеосигнал (по две линии на каждый из основных цветов).

MCGA (Multicolor Graphics Adapter — многоцветный графический адаптер) — введен фирмой IBM в ранних моделях PS/2. Добавлено разрешение 640×400 (текст), что дает формат 80×25 при матрице символа 8×16 и 80×50 — при матрице 8×8. Количество воспроизводимых цветов увеличено до 262144 (по 64 уровня на каждый из основных цветов).

Помимо палитры, введено понятие таблицы цветов, через которую выполняется преобразование 64-цветного пространства цветов EGA в пространство цветов MCGA. Введен также видеорежим 320x200x256, в котором вместо битовых плоскостей используется представление экрана непрерывной областью памяти объемом 64000 байт, где каждый байт описывает цвет соответствующей ему точки экрана.

Совместим с CGA по всем режимам, а с EGA — по текстовым, за исключением размера матрицы символа. Частота строчной развертки — 31 Кгц, для эмуляции режимов CGA используется так называемое двойное сканирование — дублирование каждой строки формата Nx200 в режиме Nx400.

интерфейс с монитором — аналогово-цифpовой: цифровые сигналы синхронизации, аналоговые сигналы основных цветов, передаваемые монитору без дискретизации. Поддерживает подключение монохромного монитора и его автоматическое опознание — при этом в видео-BIOS включается режим суммирования цветов по так называемой шкале серого (grayscale) для получения полутонового чеpно-белого изображения.

Суммирование выполняется только при выводе через BIOS — при непосредственной записи в видеопамять на монитор попадает только сигнал зеленого цвета (если он не имеет встроенного цветосмесителя).

VGA (Video Graphics Array — множество, или массив, визуальной графики) — расширение MCGA, совместимое с EGA, введен фирмой IBM в средних моделях PS/2. Фактический стандарт видеоадаптера с конца 80-х годов.

Добавлен текстовый режим 720×400 для эмуляции MDA и графический режим 640×480 с доступом через битовые плоскости.

В режиме 640×480 используется так называемая квадратная точка (соотношение количества точек по горизонтали и вертикали совпадает со стандартным соотношением сторон экрана — 4:3). Совместим с MDA, CGA и EGA, интерфейс с монитором идентичен MCGA.

IBM 8514/а — специализированный адаптер для работы с высокими разрешениями (640x480x256 и 1024x768x256), с элементами графического ускорителя. Не поддерживает видеорежимы VGA. интерфейс с монитором аналогичен VGA/MCGA.

IBM XGA — следующий специализированный адаптер IBM. расширено цветовое пространство (режим 640x480x64k), добавлен текстовый режим 132×25 (1056×400). Интерфейс с монитором аналогичен VGA/MCGA.

SVGA (Super VGA — «сверх» VGA) — расширение VGA с добавлением более высоких разрешений и дополнительного сервиса. режимы добавляются из ряда 800×600, 1024×768, 1152×864, 1280×1024, 1600×1200 — все с соотношением 4:3.

Цветовое пространство расширено до 65536 (High Color) или 16.7 млн. (True Color). Также добавляются расширенные текстовые режимы формата 132×25, 132×43, 132×50. Из дополнительного сервиса добавлена поддержка VBE.

Фактический стандарт видеоадаптера примерно с 1992 г.

Устройство типовой видеокарты

Она состоит из четырех основных устройств: памяти, контроллера, ЦАП и ПЗУ.

память служит для хранения изображения. От ее объема зависит максимально возможное полное разрешение видеокарты A*B*C, где A — количество точек по горизонтали, B — по вертикали, и C — количество возможных цветов каждой точки.

Например, для разрешения 640x480x16 достаточно 256 Кб, для 800x600x256 — 512 Кб, для 1024x768x65536 (другое обозначение — 1024x768x64k) — 2 Мб, и т.д.

Поскольку для хранения цветов отводится целое число разрядов, количество цветов всегда является степенью двойки (16 цветов — 4 разряда, 256 — 8 разрядов, 64k — 16, и т.д.).

контроллер отвечает за вывод изображения из видеопамяти, регенерацию ее содержимого, формирование сигналов развертки для монитора и обработку запросов центрального процессора.

Для исключения конфликтов при обращении к памяти со стороны видеоконтроллера и центрального процессора первый имеет отдельный буфер, который в свободное от обращений ЦП время заполняется данными из видеопамяти.

Если конфликта избежать не удается — видеоконтроллеру приходится задерживать обращение ЦП к видеопамяти, что снижает производительность системы; для исключения подобных конфликтов в ряде карт применялась так называемая двухпортовая память, допускающая одновременные обращения со стороны двух устройств.

Многие современные видеоконтроллеры является потоковыми — их работа основана на создании и смешивании воедино нескольких потоков графической информации.

Обычно это основное изображение, на которое накладывается изображение аппаратного курсора мыши и отдельное изображение в прямоугольном окне.

контроллер с потоковой обработкой, а также с аппаратной поддержкой некоторых типовых функций называется акселератором или ускорителем, и служит для разгрузки ЦП от рутинных операций по формированию изображения.

ЦАП (цифроаналоговый преобразователь, DAC) служит для преобразования результирующего потока данных, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на монитор.

Все современные мониторы используют аналоговый видеосигнал, поэтому возможный диапазон цветности изображения определяется только параметрами ЦАП.

Большинство ЦАП имеют разрядность 8×3 — три канала основных цветов (красный, синий, зеленый, RGB) по 256 уровней яркости на каждый цвет, что в сумме дает 16.7 млн. цветов. Обычно ЦАП совмещен на одном кристалле с видеоконтроллером.

-ПЗУ — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т.п.

ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор, и в результате выполнения им программ из ПЗУ происходят обращения к видеоконтроллеру и видеопамяти.

ПЗУ необходимо только для первоначального запуска адаптера и работы в режиме MS DOS; операционные системы с графическим интерфейсом — Windows или OS/2 — практически не используют ПЗУ для управления адаптером, хотя и могут иметь проблемы в работе при ошибках в программе BIOS, не найденных разработчиками.

На карте обычно размещаются один или несколько разъемов для внутреннего соединения; один из них носит название Feature Connector и служит для предоставления внешним устройствам доступа к видеопамяти и изображению. К этому разъему может подключаться телеприемник, аппаратный декодер MPEG, устройство ввода изображения и т.п. На некоторых картах предусмотрены отдельные разъемы для подобных устройств.

ускорители (акселераторы)

Ускоритель (accelerator) — набор аппаратных возможностей адаптера, предназначенный для перекладывания части типовых операций по работе с изображением на встроенный процессор адаптера. Различаются ускорители графики (graphics accelerator) с поддержкой изображения отрезков, простых фигур, за

Источник: https://www.studsell.com/view/23941/

Учебно-методический комплекс

Видеоадаптеры: принципы работы, типы, сравнительная характеристика

Мониторы и видеоадаптеры. Устройство, принцип действия, подключение.

Монитор является жизненно важным посредником в обмене информацией между человеком и компьютером, таким же, как клавиатура и мышь. Однако на свет он появился позже других устройств.

До появления первых мониторов с электронно-лучевыми трубками стандартным интерфейсом служил телетайп — громоздкая и очень шумная машина, печатающая на рулоне бумаги вводимую и выводимую информацию.

В первых персональных компьютерах для отображения выводимой информации часто использовались светодиодные экраны.

По сравнению с современными стандартами первые компьютерные мониторы были крайне примитивны; текст отображался только в одном цвете (как правило, в зеленом), однако в те годы это было важнейшим технологическим прорывом, поскольку пользователи получили возможность вводить и выводить данные в режиме реального времени.

Затем появились цветные мониторы, увеличился размер экрана и жидкокристаллические панели перекочевали из портативных компьютеров на рабочие столы пользователей.

Последние тенденции — крупноформатные плазменные дисплеи и LCD/DLP-проекторы — полностью отражают все возрастающую конвергенцию компьютерных технологий и сферы развлечения.

В наши дни компьютерные мониторы достигли высшей ступени развития, что не избавляет пользователя от необходимости разбираться в аппаратном обеспечении. Медленный видеоадаптер может затормозить работу даже самого быстрого компьютера. А неправильное сочетание монитора и видеоадаптера не только не позволит полноценно выполнять поставленные задачи, но и может привести к ухудшению зрения.

Система отображения компьютера состоит из двух главных компонентов.

·          Монитор (дисплей) обычно представляет собой жидкокристаллический экран или переднюю панель электронно-лучевой трубки, но может быть и широкоформатным телевизором, плазменной панелью и проектором, использующими технологии LCD и DLP.

·          адаптер (графический адаптер или видеокарта) в большинстве систем представляет собой карту расширения, вставляемую в один из разъемов материнской платы. В некоторых системах он интегрирован в саму системную плату или в ее набор микросхем системной логики, однако и такие компьютеры можно дополнить обособленным и более производительным видеоадаптером AGP, PCI или PCI-Express.

Компьютерный монитор обычно базируется на одной из двух основных технологий: жидкокристаллический дисплей LCD (LiquidCrystalDisplay) или электронно-лучевая трубка CRT (Cathode-RayTube). Проекторы базируются на технологии LCD или DLP (DigitalLightProcessing — цифровая обработка света).

Жидкокристаллические мониторы

Жидкокристаллические (ЖК, LCD) мониторы благодаря своему малому весу, размерам и цветопередаче в настоящее время практически вытеснили с рынка мониторы на электроннолучевой трубке (ЭЛТ, CRT).

Настольные LCD-мониторы во многом похожи на экраны ноутбуков.

По сравнению с классическими ЭЛТ-мониторами у них есть целый ряд преимуществ: плоский экран без бликов и очень низкий уровень энергопотребления (5 Вт по сравнению со

100 Вт, характерными для обычного ЭЛТ-монитора). По цветопередаче жидкокристаллические мониторы уже приблизились (если не превзошли) к ЭЛТ-мониторам (правда, при этом нельзя забывать об ограничениях, связанных с углом обзора).

Как работает жидкокристаллический монитор

В жидкокристаллическом экране поляризационный светофильтр создает две раздельные световые волны и пропускает только ту, плоскость поляризации которой параллельна его оси.

Располагая в жидкокристаллическом мониторе второй светофильтр так, чтобы его ось была перпендикулярна оси первого, можно полностью предотвратить прохождение света (экран будет темным). Вращая ось поляризации второго фильтра, т.е.

изменяя угол между осями светофильтров, можно изменить количество пропускаемой световой энергии, а значит, и яркость экрана.

В цветном жидкокристаллическом экране есть еще один дополнительный светофильтр, который имеет три ячейки на каждый пиксель изображения — по одной для отображения красной, зеленой и синей точек. Красная, зеленая и синяя ячейки, формирующие пиксель, иногда называются субпикселями.

Размеры экрана и разрешение жидкокристаллических мониторов

Жидкокристаллические мониторы со стандартным отношением сторон 4:3 выпускаются с размером экрана от 15 до 23 дюймов по диагонали.

Мониторы с размером экрана 15-18,1 дюйма обычно имеют более ограниченное разрешение по сравнению с ЭЛТ-мониторами, в то время как мониторы обоих типов с большим размером экрана обладают приблизительно одинаковыми разрешениями. В табл. 13.

2 приведены сравнительные характеристики ЖК-мониторов с размером экрана 15-23 дюйма, а также ЭЛТ-мониторов с размером экрана 17-21 дюйм.

Таким образом, если вам необходим жидкокристаллический монитор с разрешением свыше 1280×1024 пикселей, придется приобрести модель с размером экрана 20,1 дюйма, хотя даже обычные 18-дюймовые ЭЛТ-мониторы поддерживают разрешение 1600×1200 пикселей.

Размеры экрана и разрешение жидкокристаллических мониторов

Жидкокристаллические мониторы со стандартным отношением сторон 4:3 выпускаются с размером экрана от 15 до 23 дюймов по диагонали.

Мониторы с размером экрана 15-18,1 дюйма обычно имеют более ограниченное разрешение по сравнению с ЭЛТ-мониторами, в то время как мониторы обоих типов с большим размером экрана обладают приблизительно одинаковыми разрешениями. В табл. 13.

2 приведены сравнительные характеристики ЖК-мониторов с размером экрана 15-23 дюйма, а также ЭЛТ-мониторов с размером экрана 17-21 дюйм.

Таким образом, если вам необходим жидкокристаллический монитор с разрешением свыше 1280×1024 пикселей, придется приобрести модель с размером экрана 20,1 дюйма, хотя даже обычные 18-дюймовые ЭЛТ-мониторы поддерживают разрешение 1600×1200 пикселей.

Способы подключения жидкокристаллических мониторов

Хотя жидкокристаллические мониторы по своей природе являются цифровыми, многие компьютеры, особенно малобюджетные системы и системы с интегрированной графической подсистемой, содержат только аналоговые порты для подключения монитора.

Поэтому стандартный жидкокристаллический монитор может быть оснащен аналоговым портом VGA, цифровым портом DVI или и тем, и другим.

Как правило, бюджетные модели жидкокристаллических мониторов с размером экрана от 15 до 19 дюймов оснащены традиционным аналоговым разъемом VGA, а значит, им проходится снова преобразовывать аналоговые сигналы в цифровые.

В то же время более дорогие модели мониторов оснащены аналоговым разъемом VGA и цифровым разъемом DVI, который сейчас имеют практически все видеоадаптеры среднего и высокого ценового диапазона.

Замечу, что некоторые производители мониторов с разъемами VGA/DVI поставляют только дешевый кабель VGA, вынуждая пользователей самостоятельно приобретать кабель DVI. Если вы планируете подключать монитор именно к порту DVI, обращайте внимание на такие модели мониторов, у которых кабель DVI входит в комплект поставки. При этом стоимость монитора оказывается все равно ниже суммарной стоимости устройства, в поставке которого кабель DVI отсутствует, и самого кабеля.

При покупке монитора следует руководствоваться перечисленными ниже критериями.

■ Проверьте качество изображения при «родном» и других разрешениях жидкокристаллической панели, которые планируете использовать. Это особенно важно для веб-дизайна, игр и редактирования видео.

■ Удостоверьтесь в том, что имеющийся видеоадаптер поддерживает все необходимые функции и оснащен нужными портами подключения. Если существующая система не оборудована портом DVI, стоит серьезно задуматься о модернизации видеоадаптера. Для большей гибкости при невозможности немедленно обновить видеоадаптер приобретайте панель, содержащую как аналоговый, так и цифровой входы.

■ Для использования монитора с разными компьютерами необходимы и аналоговый, и цифровой интерфейсы.

Поскольку жидкокристаллические дисплеи гораздо легче и компактнее классических ЭЛТ-мониторов, они прекрасно подходят для подключения как к ноутбуку, так и к настольному компьютеру.

Иногда весьма полезной будет возможность подключения двух компьютеров к одному экрану, для чего нужен монитор, поддерживающий функцию обработки множественных входящих сигналов.

Как работает электронно-лучевой монитор

Информация на мониторе может отображаться несколькими способами. Самый распространенный — отображение на экране электронно-лучевой трубки (ЭЛТ), такой же, как в телевизоре. ЭЛТ представляет собой электронный вакуумный прибор в стеклянной колбе, в горловине которого находится электронная пушка, а на дне — экран, покрытый люминофором.

Нагреваясь, электронная пушка испускает поток электронов, которые с большой скоростью устремляются к экрану. Поток электронов (электронный луч) проходит через фокусирующую и отклоняющую катушки, которые направляют его в определенную точку покрытого люминофором экрана.

Под воздействием ударов электронов люминофор излучает свет, который видит пользователь, сидящий перед экраном компьютера. В электронно-лучевых мониторах используются три слоя люминофора: красный, зеленый и синий.

Для выравнивания потоков электронов применяется так называемая теневая маска — металлическая пластина, имеющая щели или отверстия, которые разделяют красный, зеленый и синий люминофор на группы по три точки каждого цвета.

Качество изображения определяется типом используемой теневой маски; на резкость изображения влияет расстояние между группами люминофора (шаг расположения точек).

Многочастотные мониторы

В одних старых мониторах установлена фиксированная частота развертки, в других поддерживаются разные частоты в некотором диапазоне (такие мониторы называются многочастотными). Практически все современные мониторы многочастотные, т.е.

могут работать с разными стандартами видеосигнала, которые получили довольно широкое распространение.

Для обозначения мониторов такого типа производители используют различные термины: синхронизируемые (multisync), многочастотные (multifrequency), многорежимные (multiscan), автосинхронизирующиеся (autosynchronous) и с автонастройкой (autotracking).

Тип экрана монитора

Экраны мониторов могут быть двух типов: выпуклые и плоские. Раньше большинство экранов были выпуклыми, т.е. экран изгибался к краям корпуса. Этот принцип применялся в производстве львиной доли ЭЛТ-мониторов и телевизоров.

Несмотря на низкую стоимость подобного экрана выпуклая поверхность приводила к искажению изображения и появлению бликов, особенно если монитор располагался в ярко освещенной комнате.

Чтобы уменьшить уровень отблеска света типичного выпуклого экрана, в некоторых мониторах используется специальное антибликовое покрытие.

Обычно экран искривлен как по вертикали, так и по горизонтали. В некоторых моделях (Sony FD Trinitron и MitsubishiDiamondTron NF) используется конструкция Trinitron, в которой поверхность экрана имеет небольшую кривизну только по вертикали. Подобная трубка называется плоской (FlatSquareTube — FST).

Плазменные дисплеи

Плазменные технологии, используемые при производстве широкоэкранных дисплеев, имеют довольно долгую историю.

В конце 1980-х годов IBM разработала монохромный плазменный экран, способный отображать оранжевый текст или графику на черном фоне.

Компания Toshiba использовала данный экран в портативных компьютерах моделей Т3100 и Т3200, оснащенных 6300-совместимым адаптером CGA/AT&T с двойным сканированием, поддерживающим разрешение 640×400 пикселей.

Плазменные дисплеи выпускаются размером от 42 до 50 дюймов и даже больше. Прежде всего, они предназначены для использования с такими источниками сигнала, как DVD, TV и HDTV, поэтому обычно поддерживают разрешение 852×480 или 1366×768 пикселей (Wide XGA).

адаптер обеспечивает интерфейс между компьютером и монитором, передавая сигналы, которые превращаются в изображение, которое мы видим на экране. На протяжении всей истории ПК было разработано несколько удачных стандартов, каждый последующий из которых обеспечивал более высокие разрешение и глубину цвета.

Наиболее значимые стандарты видеоадаптеров перечислены ниже.

MDA (MonochromeDisplayAdapter) HGC (HerculesGraphicsCard) CGA (ColorGraphicsAdapter) EGA (EnhancedGraphicsAdapter) VGA (VideoGraphicsArray) SVGA (Super VGA) XGA (eXtendedGraphicsArray) UGA (UltraVideoGraphicsArray) Большинство этих стандартов были изначально разработаны компанией IBM и затем лицензированы другими производителями.

В настоящее время IBM уступила пальму первенства в производстве высококачественных мониторов другим компаниям, а большая часть приведенных стандартов безнадежно устарела. Единственным исключением является VGA; этой аббревиатурой обозначают базовые возможности монитора, используемые практически любым видеоадаптером.

Среди характеристик купленного видеоадаптера вы найдете, вероятнее всего, не список стандартов, таких как XGA или UVGA, а разрешение и глубину цветности. В то же время знакомство с основными стандартами позволит понять ход эволюции технологий и подготовит к случайной встрече с восставшими из мрачного прошлого старыми адаптерами.

Современные VGA-адаптеры способны отображать интерфейс программ, написанных для CGA, EGA и других устаревших стандартов. Это позволяет использовать старые программы (такие, как игры и образовательные программы) даже на современном ПК.

Однако следует иметь в виду, что некоторые программы запустить не удается, так как они обращаются к регистрам, которые современными видеоадаптерами не поддерживаются.

Компоненты Подробности Родительская категория: адаптеры Категория: Компоненты видеосистемы Для работы видеоадаптера необходимы следующие основные компоненты: видео-BIOS; графический процессор, иногда называемый графическим акселератором; видеопамять; цифроаналоговый преобразователь DAC (ранее используемый в качестве отдельной микросхемы, DAC зачастую встраивается в графический процессор новых наборов микросхем; необходимость в подобном преобразователе в полностью цифровых системах — цифровая видеокарта плюс цифровой монитор — отпадает, однако, пока живы аналоговый интерфейс VGA и аналоговые мониторы, DAC еще некоторое время будет использоваться); разъем (AGP / PCI); видеодрайвер.

Источник: http://surazhspk.narod.ru/kop/Architec/public_html/page31.html

адаптер

Видеоадаптеры: принципы работы, типы, сравнительная характеристика

Основные характеристики видеоадаптеров:

• ширина шины памяти, измеряется в битах — количество бит информации, передаваемой в секунду. Важный параметр в производительности карты.

• количество видеопамяти, измеряется в Мегабайтах — встроенная оперативная память на самой плате, значение показывает, какой объем информации может хранить графическая плата.

• частоты ядра и памяти — измеряются в Мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.

• техпроцесс — технология печати, измеряется в нанометрах (нм.), современные карты выпускаются по 110 нм или 90 нм нормам техпроцесса. Чем меньше данный параметр, тем больше элементов можно уместить на кристалле.

• текстурная и пиксельная скорость заполнения, измеряется в млн. пикселей в секунду, показывает количество выводимой в информации в единицу времени.

• выводы карты — раньше видеоадаптер имел всего один разъём VGA, сейчас платы оснащают в дополнение выходом DVI—I или просто с двумя DVI-I для подключения двух ЖК-мониторов, а также композитными видеовыходом и видеовходом (обозначается, как ViVo)

Современная графическая плата состоит из следующих частей:

графический процессор (GPU) — занимается расчетами выводимого изображения, освобождая от этой обязанности центральный процессор, производит рассчеты для обработки команд трехмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства.

Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят их по числу транзисторов.

Архитектура современного GPU обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D графики, блок обработки 3D графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

видеоконтроллер — отвечает за формирование изображения в видеопамяти, дает команды RAMDAC на формирование сигналов развертки для монитора и осуществляет обработку запросов центрального процессора.

Кроме этого, обычно присутствуют контроллер внешней шины данных (например PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно шире внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается еще и RAMDAC.

Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

видеопамять — выполняет роль кадрового буфера, в котором хранится в цифровом формате изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные.

память бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2 или GDDR3.

Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE.

цифро-аналоговый преобразователь ЦАП (RAMDAC) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC.

Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, синий, зеленый, RGB), и SRAM для хранения данных о гамма коррекции.

Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16.7 млн. цветов (и за счет гамма коррекции есть возможность отображать исходные 16.7 млн. цветов в гораздо большее цветовое пространство).

Некоторые RAMDAC имеют разрядность по каждому каналу 10bit (1024 уровня яркости), что позволяет сразу отображать более 1 млрд. цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП.

Стоит отметить, что мониторы и видеопроекторы подключаемые к цифровому DVI выходу видеокарты для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.

видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор.

Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS).

На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEРROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых значениях.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеочипа и загружаемого в процессе запуска операционной системы.

драйвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым идет через соответствующую шину.

====== **память** ======

Кроме шины данных, второе узкое место любого видеоадаптера — это пропускная способность (англ. bandwidth) памяти самого видеоадаптера.

Причем изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного голода видеокантроллера, когда он данные обрабатывает быстрее чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны чипа видеоадаптера, центрального процессора, и RAMDAC’а. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал который и пойдет на монитор. Если объяснить более понятно и просто, то начнем с того, что то изображение что вы видите на экране монитора хранится не в мониторе, а в памяти видеоадаптера. И его нужно прочитать из памяти и вывести на экран столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмем объем одной страницы экрана при разрешении 1024×768 точек и глубине цвета 24bit (True Color), это составляет 2.25MB. При частоте кадров 75Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пиксели передаются в RAMDAC и он преобразовывает цифровые данные о цвете пикселя в аналоговый сигнал поступающий на монитор), причем ни задержаться, ни пропустить пиксель нельзя, следовательно номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170MB/сек, и это без учета того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32бит при той же частоте кадров 75Гц, номинально потребная пропускная составляет уже 550 МБайт в секунду, для сравнения, процессор Pentium2 имел пиковую скорость работы с памятью 528МБ в секунду. Проблему можно было решать двояко — либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из нее, либо ставить очень быструю память. О типах памяти и пойдет речь.

FPM DRAM — FPM DRAM (Fast Page Mode Dynamic RAM — динамическое ОЗУ с быстрым страничным доступом) — основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхронный доступ, при котором управляющие сигналы жестко не привязаны к тактовой частоте системы. Активно применялся примерно до 1996 г.

VRAM (Video RAM — видеоОЗУ) — так называемая двух-портовая DRAM. Этот тип памяти обеспечивает доступ к данным со стороны сразу двух устройств, то есть есть возможность одновременно писать данные в какую-либо ячейку памяти, и одновременно с этим читать данные из какой-нибудь соседней ячейки.

За счет этого позволяет совмещать во времени вывод изображения на экран и его обработку в видеопамяти, что сокращает задержки при доступе и увеличивает скорость работы. То есть RAMDAC может свободно выводить на экран монитора раз за разом экранный буфер ничуть не мешая видео чипу осуществлять какие-либо манипуляции с данными.

Но однако это все та же DRAM и скорость у нее не слишком высокая.

WRAM (Window RAM) — вариант VRAM, с увеличенной на ~ 25 % пропускной способностью и поддержкой некоторых часто применяемых функций, таких как отрисовка шрифтов, перемещение блоков изображения и т. п.

Применяется практически только на акселераторах фирмы Matrox и Number Nine, поскольку требует специальных методов доступа и обработки данных, наличием всего одного производителя данного типа памяти (Samsung) сильно сократило возможности ее использования.

адаптеры построенные с использованием данного типа памяти не имеют тенденции к падению производительности при установке больших разрешений и частот обновления экрана, на одно-портовой же памяти в таких случаях RAMDAC все большее время занимает шину доступа к видеопамяти и производительность видеоадаптера может сильно упасть.

EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с расширенным временем удержания данных на выходе) — тип памяти с элементами конвейеризации, позволяющий несколько ускорить обмен блоками данных с видеопамятью приблизительно на 25 %.

SDRAM (Synchronous Dynamic RAM — синхронное динамическое ОЗУ) пришел на замену EDO DRAM и других асинхронных одно-портовых типов памяти. После того, как произведено первое чтение из памяти, или первая запись в память, последующие операции чтения или записи происходят с нулевыми задержками. Этим достигается максимально возможная скорость чтения и записи данных.

DDR DRAM (Double Data Rate) — вариант SDRAM с передачей данных по двум фронтам сигнала, получаем в результате удвоение скорости работы. Дальнейшее развитие пока происходит в виде очередного уплотнения числа пакетов в одном такте шины (DDR2, QDDR и т. п.

)SGRAM (Synchronous Graphics RAM — синхронное графическое ОЗУ) вариант DRAM с синхронным доступом. В принципе, работа SGRAM полностью аналогична SDRAM, но дополнительно поддерживаются еще некоторые специфические функции, типа блоковой и масочной записи.

В отличие от VRAM и WRAM, SGRAM является одно-портовой, однако может открывать две страницы памяти как одну, эмулируя двухпортовость других типов видеопамяти.

MDRAM (Multibank DRAM — много банковое ОЗУ) — вариант DRAM разработанный фирмой MoSys, организованный в виде множества независимых банков объемом по 32КБ каждый, работающих в конвейерном режиме.

RDRAM (RAMBus DRAM) память использующая специальный канал передачи данных (Rambus Channel), представляющий собой шину данных шириной в один байт.

По этому каналу удается передавать информацию очень большими потоками, наивысшая скорость передачи данных для одного канала на сегодняшний момент составляет 1600MB/сек (частота 800MHz, данные передаются по обеим срезам импульса).

На один такой канал можно подключить несколько чипов памяти.

Контроллер этой памяти работает с одним каналом Rambus, на одном чипе логики можно разместить четыре таких контроллера, значит теоретически можно поддерживать до 4 таких каналов, обеспечивая максимальную пропускную способность в 6.4GB/сек. Минус этой памяти — нужно читать информацию большими блоками, иначе её производительность резко падает.

Начнём традиционно с истории. Первые видеокарты не были даже не 3D-ускорителями, а не были ускорителями вообще. Они служили лишь как ЦАП (цифро-аналоговый преобразователь) – преобразовывали данные, рассчитанные центральным процессором (представляющий собой цифровой код) в аналоговый сигнал, доступный для отображения на мониторе.

Но сложность изображений росла, и дальше так продолжаться не могло. Тенденция усложнения изображений привела к появлению 2D- ускорителя – видеокарты, имеющий свой собственный, пусть и простейший процессор, бравший на себя часть функций, разгружая центральный процессор.

Но когда появилась необходимость строить 3D изображения – ситуация осложнилась.

Чтобы построить, скажем, простой фрагмент стены, процессору нужно было выполнить следующие операции: сначала необходимо выделить грани этого объекта, затем наложить текстуры, добавить освещение… а когда таких объектов сотни, их форма сложна, они движутся и перекрываются, отбрасывают тени и т.д. задача становится невероятно сложной. Для помощи процессору в решении этой задачи и были созданы ускорители трёхмерной графики, о работе которых и пойдёт речь в этой статье.

Итак, каждая стадия построения изображения очень ресурсоемка, требует множества расчётов. Вполне логичным выглядит шаг вынесения их из CPU и переправка на специализированный процессор видеокарты.

Особенно если учитывать, что графические данные имеют потоковый характер, и вычислительную потребность значительно большую, чем логическую.

Каждый новый виток развития ускорителей представляет собой некое поколение, поэтому для начала введём стандартизацию поколений (понимать поколения можно по-разному – я приведу лишь один вариант):

1. Первое поколение, которое было более-менее распространено – это акселераторы, использующие API Direct3D 5 и Glide. Представителем первых была NVIDIA Riva128, а вторых – 3Dfx Voodoo. Карты этого поколения брали на себя только последнюю часть построения сцены – текстурирование и закраску. Все предыдущие этапы выполнял CPU.

2. Второе поколение использовало API Direct3D 6, также в это время началось стремительное возрождение API, разработанного SGI – OpenGL. Представителями карт того времени были NVIDIA RivaTNT и ATI Rage. Это было практически эволюционное развитие карт предыдущего поколения.

3. Третье поколение – Direct3D 7. Именно тогда появились карты, снабженные TCL-блоком, снимавшим с CPU значительную часть нагрузки. Этот блок отвечал за трансформацию, освещение и отсечение. (TCL — Transformaton-Clipping-Lighting) Теперь видеокарта строила сцену самостоятельно – от начала до конца. Представителями этого поколения стали NVIDIA GeForce256 и ATI Radeon.

4. Четвёртое поколении – очередная революция. Кроме прочих новых возможностей API Direct3D 8 (и 8.1) эти карты принесли с собой самую главную возможность – аппаратные шейдеры. Причину их появления мы опишем чуть позже. Представляют это поколение NVIDIA GeForce 3,4 и ATI Radeon 8500, 9000, 9100, 9200.

5. Пятое поколение – это, в основном, развитие шейдерных технологий (версия 2.0), и попытка ввести АА и АФ в ряд обязательных к использованию функций. Это поколение, поддерживает API Direct3D версии до 9.0b включительно, представляют ATI RADEON 9500, 9600, 9700, 9800, Х800, а также NVIDIA GeForce FX 5200, 5500, 5600, 5700, 5800, 5900, 5950.

6. Шестое поколение – это поколение DirectX9.0c. Оно пока включает в себя только одну серию NVIDIA GeForce 6 и платы GeForce 6800Ultra/6800GT/6800 на базе чипа NV40. Эти карты поддерживают шейдеры версии 3.

0, и предлагают некоторые другие возможности.

Теперь, определившись с общим устройством конвейера и поколениями видеокарт, мы более подробно рассмотрим вершинный и фрагментный процессоры, а также определимся в отличиях версий соответствующих шейдеров.

Причиной появления шейдеров стало отсутствие какой-либо гибкости у фиксированного TCL блока. Быстро стало понятно, что ждать момента, когда производители внесут очередную порцию функций в TCL блок видеокарт – не лучший выход. Такой подход не устраивал никого.

Разработчикам не нравилась мысль, что для того, чтобы внести в, например, игру новый эффект им надо годик подождать выхода нового ускорителя. Производителям тоже не светило ничего хорошего – им бы пришлось постоянно увеличивать как сами чипы, так и драйверы к ним.

Это и стало причиной появления шейдеров – программ, способных настраивать ускоритель так, как того требует следующая сцена.Шейдер – это программа, которая загружается в ускоритель, и конфигурирует его узлы для обработки соответствующих элементов. Теперь нет ограничения заранее заданным набором способов обработки эффектов.

Теперь стало возможно составлять из стандартных инструкций любые программы (ограниченные спецификациями используемой версией шейдера), задающие необходимые эффекты.

Шейдеры делятся по своим функциям на вершинные и фрагментные (пиксельные): первые работают с вершинами и треугольниками, заменяя собой функциональность TCL блока (сейчас он практически исчез – в случае необходимости он эмулируется специальным вершинным шейдером). Фрагментные же шейдеры служат для создания программ обработки фрагментов размеров 2х2 пикселя – квадов.

Они необходимы для реализации некоторых текстурных эффектов.Шейдеры также характеризуются номером версии — каждая последующая добавляет к предыдущим всё новые и новые возможности. Наиболее свежей спецификацией фрагментных и вершинных шейдеров на сегодняшний день является версия 3.

0, поддерживаемая через API DirectX 9с, — на нее и будут ориентироваться как производители акселераторов, так и разработчики новых игр. На их поддержку аппаратурой стоит обращать внимание и пользователям, желающим приобрести современную игровую видеокарту. Обратим внимание на главное отличие шейдеров 3.0 от предыдущих версий (кроме 2.

0а) – это DFC – Dynamic Flow Control – динамическое управление потоком. С одной стороны – это великолепная возможность, позволяющая заметно повысить скорость построения сцены, с другой – лишние транзисторы, и как вытекающие побочные эффекты, лишнее тепло и ниже максимальные частоты. Давайте более подробно опишем эту возможность.

Представим себе ситуацию, когда для какой-либо вершины (или фрагмента) шейдер нужно выполнить не весь, а только 12% от него. В случае применения DFC мы выполним лишь те необходимые 12%, основываясь на параметрах объекта. Без DFC мы вынуждены выполнить шейдер целиком.

Легко заметить, что с DFC мы получим выигрыш без малого в 10 раз, при этом, заплатив пониженной производительностью на вершинах, для которых нужно выполнить все 100% шейдера. Именно по этому в сети до сих пор не утихают споры – хорошо это или нет. Я не буду проводить сравнения – тут каждый сам делает выбор, а лишь отмечу, что я лично сторонник третьей шейдерной модели.

Первые шейдеры состояли всего из нескольких команд, и их нетрудно было написать на низкоуровневом языке ассемблера. Хотя сложность отладки ассемблерного кода поначалу отпугнула от шейдеров многих разработчиков… Но с ростом сложности шейдерных эффектов, насчитывающих иногда десятки и сотни команд, возникла необходимость в более удобном, высокоуровневом языке написания шейдеров. Их появилось сразу два: NVIDIA Cg (C for graphics) и Microsoft HLSL (High Level Shading Language) — последний является частью стандарта DirectX 9. Достоинства и недостатки этих языков, и прочие нюансы будут интересны только программистам, так что подробнее на них мы останавливаться не станем. Отметим только, что Cg не получил широкого распространения, ввиду появления нового, более продвинутого GLSL – аналога HLSL для API OpenGL.

Источник: http://www-old.fizmat.vspu.ru/doku.php?id=vsst:%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE%D0%B0%D0%B4%D0%B0%D0%BF%D1%82%D0%B5%D1%80%D1%8B

адаптеры: принципы работы, типы, сравнительная характеристика (стр. 1 из 6)

Видеоадаптеры: принципы работы, типы, сравнительная характеристика

адаптеры: принципы работы, типы, сравнительная характеристика

1.Введение

Для начала необходимо разобраться, что такое видеоадаптер и для чего он нужен?

Поскольку максимум информации о внешнем мире большинство из нас получает визуально, никто не рискнет отрицать, что видеоподсистема — один из наиболее важных компонентов персонального компьютера. подсистема, в свою очередь, состоит из двух основных частей: монитора и видеоадаптера.

адаптер — это электронная плата, которая обрабатывает видеоданные (текст и графику) и управляет работой дисплея. Содержит видеопамять, регистры ввода вывода и модуль BIOS. Посылает в дисплей сигналы управления яркостью лучей и сигналы развертки изображения.

адаптер может быть оформлен в виде отдельной платы, вставляемой в слот расширения компьютера, или может быть расположен непосредственно на системной плате компьютера.

адаптер включает в себя видеопамять, в которой хранится изображение, отображаемое в данный момент на экране дисплея, постоянное запоминающее устройство, в котором записаны наборы шрифтов, отображаемые видеоадаптером в текстовых и графических режимах, а также функции BIOS для работы с видеоадаптером. Кроме того, видеоадаптер содержит сложное управляющее устройство, обеспечивающее обмен данными с компьютером, формирование изображения и некоторые другие действия.

адаптеры могут работать в различных текстовых и графических режимах, различающихся разрешением, количеством отображаемых цветов и некоторыми другими характеристиками.

Сам видеоадаптер не отображает данные. Для этого к видеоадаптеру необходимо подключить дисплей. Изображение, создаваемое компьютером, формируется видеоадаптером и передается на дисплей для предоставления ее конечному пользователю.

адаптер предназначен для хранения видеоинформации и отображения ее на экране монитора. Он непосредственно управляет монитором, а также процессом вывода информации на экран с помощью изменения сигналов строчной и кадровой развертки ЭЛТ-монитора, яркости элементов изображения и параметров смешения цветов.

Основными узлами современного видеоадаптера являются собственно видеоконтроллер (как правило, заказная БИС — ASIC), видео BIOS, видеопамять, специальный цифроаналоговый преобразователь RAMDAC (Random Access Memory Digital to Analog Converter), кварцевый генератор (один или несколько) и микросхемы интерфейса с системной шиной (ISA, VLB, PCI, AGP или другой).

Важным элементом видеоподсистемы является собственная память. Для этой цели используется память видеоадаптера, которая часто также называется видеопамятью, или фрейм-буфером, или же часть оперативной памяти ПК (в архитектуре с разделяемой памятью UMA). Созданием изображения на мониторе управляет обычно аналоговый видеосигнал, формируемый видеоадаптером.

А как получается видеосигнал? Компьютер формирует цифровые данные об изображении, которые из оперативной памяти поступают в специализированный процессор видеоплаты, где обрабатываются и сохраняются в видеопамяти. Параллельно с накоплением в видеопамяти полного цифрового «слепка» изображения, на экране данные считываются цифроаналоговым преобразователем (Digital Analog Converter, DAC).

Поскольку DAC обычно (хотя и не всегда) включает собственную память произвольного доступа (Random Access Memory, RAM) для хранения палитры цветов в 8-разрядных режимах, его еще называют RAMDAC. На последнем этапе DAC преобразует, цифровые данные в аналоговые и посылает их на монитор.

Эта операция выполняется DAC несколько десятков раз за одну секунду; данная характеристика называется частотой обновления (или регенерации) экрана. Согласно современным эргономическим стандартам, частота обновления экрана должна составлять не менее 85 Гц, в противном случае человеческий глаз замечает мерцание, что отрицательно влияет на зрение.

Даже подобная упрощенная схема, описывающая механизм работы универсального видеоадаптера, позволяет понять, чем руководствуются разработчики графических ускорителей и плат, когда принимают те или иные технологические решения. Очевидно, что здесь, как и в любой вычислительной системе, есть узкие места, ограничивающие общую производительность.

Где они и как их пытаются устранить? Во-первых, производительность тракта передачи данных между памятью на системной плате и графическим ускорителем.

Эта характеристика зависит в основном от разрядности, тактовой частоты и организации работы шины данных, используемой для обмена между центральным процессором, расположенным на системной плате компьютера, и графическим ускорителем, установленным на плате видеоадаптера (впрочем, иногда графический процессор интегрируется в системную плату).

В настоящее время шина (а точнее, порт, поскольку к нему можно подключить только одно устройство) AGP обеспечивает вполне достаточную и даже избыточную для большинства приложений производительность. Во-вторых, обработка поступающих данных графическим ускорителем.

Повысить скорость этой операции можно, совершенствуя архитектуру графического процессора, например, внедрив конвейерную обработку, когда новая команда начинает выполняться еще до завершения выполнения предыдущей. Производители увеличивают разрядность процессоров и расширяют перечень функций, поддерживаемых на аппаратном уровне; повышают тактовые частоты.

Все эти усовершенствования позволяют значительно ускорить заполнение видеопамяти графическими данными, готовыми для отображения на экране. И, в-третьих, обмен данными в подсистеме «графический процессор — видеопамять — RAMDAC». Здесь также существует несколько путей развития.

Один из них — использование специальной двухпортовой памяти, VRAM, к которой можно одновременно обращаться из двух устройств: записывать данные из графического процессора и читать из RAMDAC. Память VRAM довольно сложна в изготовлении и, следовательно, дороже других типов.

(Есть еще один вариант двухпортовой памяти, впервые примененный компанией Matrox — Window RAM, WRAM, — обеспечивающий несколько более высокую производительность при себестоимости на 20% ниже.) Поскольку использование двухпортовой памяти дает ощутимый прирост производительности лишь в режимах с высокими разрешениями (1600х1200 и выше), этот путь можно считать перспективным лишь для видеоускорителей высшего класса. Еще один способ — увеличить разрядность шины данных. У большинства производителей разрядность шины данных достигла 128 бит, то есть за один раз по такой шине можно передать 16 байт данных. Еще одно, довольно очевидное решение, — повысить частоту обращения к видеопамяти. Стандартная для современных видеоадаптеров память SGRAM работает на тактовой частоте 100 МГц, а у некоторых производителей уже используются частоты 125 и даже 133 МГц. Для чего все это нужно? Чем быстрее подготовленные графическим процессором данные поступают в RAMDAC и преобразуются в аналоговый сигнал, тем больший их объем за единицу времени будет «конвертирован» в изображение, что позволяет повысить его реалистичность и детализацию.

Все современные видеоподсистемы могут работать в одном из двух основных видеорежимов: текстовом или графическом. В текстовом режиме экран монитора разбивается на отдельные символьные позиции, в каждой из которых одновременно может выводиться только один символ.

Для преобразования кодов символов, хранимых в видеопамяти адаптера, в точечные изображения на экране служит так называемый знакогенератор, который обычно представляет собой ПЗУ, где хранятся изображения символов, «разложенные» по строкам.

При получении кода символа знакогенератор формирует на своем выходе соответствующий двоичный код, который затем преобразуется в видеосигнал. Текстовый режим в современных операционных системах используется только на этапе начальной загрузки.

За последние полтора года рынок графических адаптеров претерпел существенные изменения, в числе которых стоит отметить выделение домашних видеоадаптеров в самостоятельный сегмент.

По возможностям и цене домашние видеоадаптеры занимают промежуточное положение между офисными, оптимизированными для работы в оконной среде с нетребовательными к графике приложениями (текстовыми редакторами, базами данных), и профессиональными, которые применяются в системах автоматизированного проектирования, художественном дизайне или полиграфии.

Самое важное свойство домашних видеоадаптеров — поддержка технологий мультимедиа. Сектор домашних компьютеров и соответственно домашних видеокарт растет сейчас наиболее динамично.

2. Назначение устройства

функция, выполняемая видеокартой, преобразование полученной от центрального процессора информации и команд в формат, который воспринимается электроникой монитора, для создания изображения на экране. Монитор обычно является неотъемлемой частью любой системы, с помощью которого пользователь получает визуальную информацию.

Таким образом, связку видеоадаптер и монитор можно назвать видеоподсистемой компьютера. То, как эти компоненты справляются со своей работой, и в каком виде пользователь получает информацию, включая графику, текст, живое видео, влияет на производительность как на самого пользователя и его здоровье, так и на производительность всего компьютера в целом.

Вот почему при покупке видеоподсистемы необходимо сделать разумный выбор.

Источник: https://mirznanii.com/a/281181/videoadaptery-printsipy-raboty-tipy-sravnitelnaya-kharakteristika

План лекции: режимы работы видеоадаптера, основные типы видеоадаптеров

Видеоадаптеры: принципы работы, типы, сравнительная характеристика

План лекции.

Режимы работы видеоадаптера. Основные типы видеоадаптеров.

адаптер (видеокарта) является компонентом видеосистемы ПК, выполняющим преобразование цифрового сигнала, циркулирующего внутри ПК, в аналоговые электрические сигналы, подаваемые на монитор. По существу, видеоадаптер выполняет роль интерфейса между компьютером и устройством отображения информации (монитором).

По мере развития ПК видеоадаптеры стали реализовывать аппаратное ускорение 2D — и SD-графики, обработку видеосигналов, прием телевизионных сигналов и многое другое. Современный видеоадаптер, называемый Super VGA (Super Video Graphics Adapter), или SVGA, представляет собой универсальное графическое устройство.

адаптер определяет следующие характеристики видеосистемы:

    максимальное разрешение и максимальное количество отображаемых оттенков цветов; скорости обработки и передачи видеоинформации, определяющие производительность видеосистемы и ПК в целом.

Кроме того, в функцию видеоадаптера включается формирование сигналов горизонтальной и вертикальной синхронизации, используемых при формировании растра на экране монитора.

Принцип действия видеоадаптера состоит в следующем.

Процессор формирует цифровое изображение в виде матрицы NxM n-разрядных чисел и записывает его в видеопамять. Участок видеопамяти, отведенный для хранения цифрового образа текущего изображения (кадра), называется кадровым буфером, или фрейм-буфером.

адаптер последовательно считывает (сканирует) содержимое ячеек кадрового буфера и формирует на выходе видеосигнал, уровень которого в каждый момент времени пропорционален значению, хранящемуся в отдельной ячейке.

Сканирование видеопамяти осуществляется синхронно с перемещением электронного луча по экрану ЭЛТ.

В результате яркость каждого пиксела на экране монитора пропорциональна содержимому соответствующей ячейки памяти видеоадаптера.

По окончании просмотра ячеек, соответствующих одной строке растра, видеоадаптер формирует импульсы строчной синхронизации, инициирующие обратный ход луча по горизонтали, а по окончании сканирования кадрового буфера формирует сигнал, вызывающий движение луча снизу вверх. Таким образом, частоты строчной и кадровой развертки монитора определяются скоростью сканирования содержимого видеопамяти, т. е. видеоадаптером.

1. Режимы работы видеоадаптера

Режимы работы видеоадаптера, или видеорежимы, представляют собой совокупность параметров, обеспечиваемых видеоадаптером: разрешение, цветовая палитра, частоты строчной и кадровой развертки, способ адресации участков экрана и др.

Все видеорежимы делятся на графические и текстовые. Причем в различных режимах видеоадаптера используются разные механизмы формирования видеосигнала, а монитор в обоих режимах работает одинаково.

Графически режим является основным режимом работы видеосистемы современного ПК, например под управлением Windows. В графическом режиме на экран монитора можно вывести текст, рисунок, фотографию, анимацию или видеосюжет.

В графическом режиме в каждой ячейке кадрового буфера (матрицы NxM n-разрядных чисел) содержится код цвета соответствующего пиксела экрана. Разрешение экрана при этом также равно NxМ. Адресуемым элементом экрана является минимальный элемент изображения — пиксел.

По этой причине графический режим называют также режимом АРА (All Point Addressable — все точки адресуемы). Иногда число п называют глубиной цвета.

При этом количество одновременно отображаемых цветов равно 2n, а размер кадрового буфера, необходимый для хранения цветного изображения с разрешением NxM и глубиной цвета п, составляет NxM бит.

В текстовом (символьном) режиме, как и в графическом, изображение на экране монитора представляет собой множество пикселов и характеризуется разрешением NxM.

Однако все пикселы разбиты на группы, называемые знакоместами, или символьными позициями (Character boxes — символьные ячейки), размером р х q. В каждом из знакомест может быть отображен один из 256 символов.

Таким образом, на экране умещается M/q= M, символьных строк по N/p = N, символов в каждой. Типичным текстовым режимом является режим 80×25 символов.

Изображение символа в пределах каждого знакоместа задается точечной матрицей (Dot Matrix). Размер матрицы зависит от типа видеоадаптера и текущего видеорежима. Чем больше точек используется для отображения символа, тем выше качество изображения и лучше читается текст.

Точки матрицы, формирующие изображение символа, называются передним планом, остальные — задним планом, или фоном. На рис.1 показана символьная матрица 8×8 пикселов.

Допустив, что темной клетке соответствует логическая единица, а светлой — логический ноль, каждую строку символьной матрицы представим в виде двоичного числа. Следовательно, графическое изображение символа можно хранить в виде набора двоичных чисел.

Для этой цели используется специальное ПЗУ, размещенное на плате видеоадаптера. Такое ПЗУ называют аппаратным знакогенератором.

Рис. 1. Схема представления символа «А» в текстовом режиме в матрице 8×8 и ячейке знакогенератора

Совокупность изображений 256 символов называется шрифтом. Аппаратный знакогенератор хранит шрифт, который автоматически используется видеоадаптером сразу же после включения компьютера (обычно это буквы английского алфавита и набор специальных символов). Адресом ячейки знакогенератора является порядковый номер символа.

Для кодирования изображения символа на экране используются два байта: один — для задания номера символа, второй — для указания атрибутов символа (цвета символа и фона, подчеркивания, мигания, отображения курсора). Если на экране имеется NxM знакомест, то объем видеопамяти, необходимый для хранения изображения, составит Nt х Мt х 2 байт. Эту область видеопамяти называют видеостраницей.

страница является аналогом кадрового буфера в графическом режиме, но имеет значительно меньший объем. В наиболее распространенном текстовом режиме (80х25 символов) размер видеостраницы составляет 4000 байт, в режиме 40х25 — 2000 байт.

На практике для удобства адресации под видеостраницу отводят 4 Кбайт = 4096 байт и 2 Кбайт = 2048 байт соответственно, при этом «лишние» байты (96 и 48) не используются.

особенность текстового режима в том, что адресуемым элементом экрана является не пиксел, а знакоместо. Иными словами, в текстовом режиме нельзя сформировать произвольное изображение в любом месте экрана — можно лишь отобразить символы из заданного набора, причем только в отведенных символьных позициях.

Другим существенным ограничением текстового режима является узкая цветовая палитра — в данном режиме может быть отображено не более 16 цветов.

Таким образом, в текстовом режиме предоставляется значительно меньше возможностей для отображения информации, чем в графическом. Однако важное преимущество текстового режима — значительно меньшие затраты ресурсов ПК на его реализацию.

Переход к более высокому разрешению и большей глубине цвета привел к увеличению загрузки центрального процессора и шины ввода/вывода.

В целях разгрузки центрального процессора решение отдельных задач построения изображения было возложено на специализированный набор микросхем (Chipset) видеоадаптера, называемый графическим ускорителем, или акселератором.

Акселератор аппаратным путем выполняет ряд действий, направленных на построение изображения.

2. Основные типы видеоадаптеров.

С момента появления и до наших дней сменилось несколько типов видеосистем. К базовым классам видеосистем можно отнести следующие.

1. Адаптер MDA.

Первые модели IBM PC были оснащены монохромным дисплеем с люминофором зеленого свечения. Для связи этого дисплея с компьютером использовался видеоадаптер типа MDA (Monochrome Display Adapter — Адаптер монохромного дисплея). Он работал только в текстовом режиме 80×25 символов.

Символьная матрица (знакоместо) была размером 9×14 пикселов, поэтому разрешение, поддерживаемое монитором MDA, составляло 720×350 пикселов, а размер самого символа — 7×9 пикселов. Емкость видеопамяти видеоадаптера MDA была минимальной, достаточной для размещения только одной видеостраницы размером 4 Кбайт.

Основу видеоадаптера MDA составляла микросхема МС6845 фирмы Motorola.

2. Адаптер CGA.

система CGA включала в себя цветной TTL-монитор и видеоадаптер CGA (Color Graphics Adapter— Цветной графический адаптер). Главные отличия этой видеосистемы от MDA отражены в ее названии, т. е. она обеспечивала: цветное изображение (от 4 до 16 цветов); несколько графических режимов работы видеоадаптера.

Максимальное разрешение монитора CGA составляло 640×200. Такое разрешение использовалось либо в текстовом 80×25 (при размере знакоместа 8×8), либо в монохромном графическом режиме. В последнем случае для хранения цифрового образа экрана требовался кадровый буфер размером 640x480x1 = 128 000 бит = 15,625 Кбайт.

Поэтому объем видеопамяти видеоадаптера CGA составлял 16 Кбайт. При работе в графическом режиме с более низким разрешением (например 320×200) для кодирования цвета каждого пиксела использовалось 2 бита, благодаря чему обеспечивалось одновременное отображение 4-х цветов, а при разрешении 200×160 — 16-и цветов. В текстовом режиме были доступны все 16 цветов.

адаптер CGA также выполнен на основе микросхемы МС6845.

Меньшая детальность прорисовки символа и малое межсимвольное расстояние, использованные в CGA, настолько ухудшили различимость текста по сравнению с MDA, что длительная работа в текстовом режиме стала крайне утомительна для глаз.

Для совмещения главных достоинств CGA (графического режима и цветного изображения) с возможностью продуктивно работать в текстовых режимах, в PC могли быть установлены обе видеосистемы одновременно.

Чтобы исключить конфликты, были разнесены адреса видеопамяти и управляющих регистров на видеоадаптерах CGA и MDA.

Интересная особенность видеоадаптера CGA — он может использовать обычный телевизор в качестве устройства отображения. Для этого видеоадаптер CGA был оснащен специальным кодирующим устройством, которое из четырех двоичных сигналов I, R, G, В и сигналов синхронизации формирует композитный (совмещенный) полный цветной телевизионный сигнал (ПЦТС).

3. Адаптер HGC.

Стандарт HGC (Hercules Graphics Card), разработанный фирмой Hercules в 1982 г., явился логичным решением, позволившим объединить в одном изделии возможности MDA, обеспечивающие высококачественное отображение текста, с поддержкой графического режима CGA.

Часто видеоадаптеры этого стандарта называют картами Hercules).

Поскольку в качестве устройства отображения для данного видеоадаптера использовался стандартный монохромный монитор видеосистемы MDA, видеоадаптеры HGC быстро завоевали популярность и де-факто стали единственным стандартом в, области видеосистем для PC, разработанных за пределами фирмы IBM.

По своему разрешению (720×348) видеоадаптер HGC подобен карте MDA. Соответственно, одинаковы у них и размеры символьной матрицы для текстового режима — 9×14 пикселов. В качестве видеоконтроллера в HGC используется уже известная микросхема МС6845.

Длина первых карт Hercules равнялась примерно 30 см; на их платах размещалось около 100 отдельных корпусов микросхем. Карты, производимые позднее, объединяли все элементы в одном чипе, таком как, например, микросхема контроллера TD3088. Обычно на такой карте находится еще и параллельный порт для подключения принтера.

Однако, несмотря на все перечисленные выше достоинства, видеоадаптеры данного типа имели существенный недостаток — монохромность изображения. По этой причине их широкое использование практически прекратилось с появлением новых видеоадаптеров фирмы IBM — EGA и VGA.

4. Адаптер EGA.

Новый видеоадаптер EGA (Enhanced Graphics Adapter — Улучшенный графический адаптер) обеспечивал более высокое разрешение по вертикали, большее количество отображаемых цветов и обладал более высоким быстродействием.

Максимальное разрешение, обеспечиваемое видеосистемой EGA, составило 640×350, что позволило значительно повысить качество изображения в текстовом и графическом режимах работы по сравнению с CGA.

Благодаря увеличению размера знакоместа до 8×14 (размер символа составил 7×9) значительно повысилась четкость отображения текста.

По сравнению с CGA в видеоадаптере EGA была усовершенствована схема кодирования цвета пиксела: вместо четырех двоичных сигналов использовалось шесть, что увеличило размер палитры до 64 оттенков. Однако количество одновременно отображаемых цветов по-прежнему было ограничено шестнадцатью.

Применение 16-цветной палитры при разрешении 640×350 потребовало резко увеличить объем видеопамяти: в первых моделях видеоадаптера EGA было установлено 64 Кбайт видеопамяти, в дальнейшем размер видеопамяти был увеличен до 128 Кбайт.

адаптер EGA имел еще одну важную особенность, существенную для неанглоязычных пользователей PC: наряду с аппаратным знакогенератором он позволял использовать и программный, т. е. загружаемые шрифты. Это значительно облегчило поддержку национальных языков.

Для видеоадаптера EGA характерно наличие DIP-переключателей на задней панели блока, при помощи которых производится настройка видеоадаптера на конкретный режим работы: выбор цветного или монохромного режима, количества текстовых столбцов (40 или 80), выбор разрешения по вертикали, а также ряд других настроек.

Необходимость такой настройки диктовалась возможностью использования различных мониторов совместно с видеоадаптером EGA.

Поскольку выходной 9-штырьковый разъем видеоадаптера EGA по конструкции и назначению контактов аналогичен разъемам CGA и MDA, вместе с EGA могли использоваться три типа мониторов: монохромный монитор MDA; цветной монитор CGA; Цветной монитор EGA —  (Enhanced Color Display, ECU)

При подключении к видеоадаптеру EGA улучшенного цветного дисплея использовались более высокие частоты строчной и кадровой развертки, снижающие мерцание экрана монитора.

Многие модели видеоадаптеров EGA унаследовали от CGA возможность вывода композитного видеосигнала на обычный телевизор или композитный монитор. Такие модели имеют на задней панели разъем типа RCA.

Хотя видеосистема EGA была намного лучше, чем CGA, качество формируемого ею изображения по-прежнему нельзя было считать удовлетворительным по причине ограниченного количества одновременно отображавших цветов (16). Поэтому судьба видеосистемы EGA была предрешена.

Ее не спасло даже появление расширения стандарта EGA — видеосистемы EGA-плюс, которая обеспечивала более высокое разрешение 800×600 и отображение 16-и цветов. Эта новинка просто не успела получить широкого распространения, т. к.

вскоре появилась принципиально новая видеосистема VGA, позволившая радикально улучшить качество изображения на экране монитора PC.

5. Адаптеры VGA.

Размер цветовой палитры в видеосистемах CGA и EGA ограничивался не столько видеоадаптером (объемом видеопамяти), сколько цифровыми мониторами, не позволявшими использовать более шести двоичных сигналов для кодирования цвета.

Понимая это, специалисты фирмы IBM приняли гениальное и простое решение — вернуться к аналоговому видеосигналу, используемому в обычном телевизоре.

В итоге вместо многоразрядного цифрового сигнала видеоадаптер стал формировать трехкомпонентный аналоговый RGB-сигнал, который после усиления подавался на модуляторы электронных пушек ЭЛТ.

Так появилась видеосистема VGA, включающая новый аналоговый цветной монитор и встроенный в материнскую плату видеоадаптер VGA. Впервые она была использована в компьютере IBM PS/2 (Personal System). В дальнейшем видеоадаптеры VGA стали выпускать в виде отдельных плат, устанавливаемых в 16-разрядный слот шины ISA.

Существует несколько вариантов расшифровки аббревиатуры VGA. Первоначально она обозначала название сверхбольшой интегральной схемы (СБИС), в которой были реализованы основные узлы видеоадаптера (Video Gate Array — Вентильная матрица для формирования видеосигнала).

Однако потом нюансы внутреннего устройства таких адаптеров отошли на второй план, а расшифровка этих аббревиатур стала отражать их функциональные особенности. Была также учтена созвучность данных аббревиатур с названиями предыдущих видеоадаптеров (CGA, EGA), в которых сочетание GA (Graphics Adapter) означало графический адаптер.

В итоге, VGA стали расшифровывать как Video Graphics Adapter — графический адаптер, формирующий видеосигнал (т. е. аналоговый сигнал).

Основным конструктивным отличием видеоадаптера VGA от своего предшественника (EGA) стало наличие специальной микросхемы — RAMDAC (Random Access Memory Digital-to-Analog Converter — Цифро-аналоговый преобразователь данных, хранимых в ОЗУ).

RAMDAC представлял собой быстродействующий трехканальный ЦАП, оснащенный 256-ю регистрами цвета, образующими его собственное маленькое ОЗУ — RAM (этим и объясняется название данного элемента — RAMDAC, а не просто DAC).

RAMDAC предназначен для преобразования двоичных чисел, содержащихся в ячейках видеопамяти, в три непрерывных RGB-сигнала, уровень которых пропорционален яркости каждого из трех основных цветов.

адаптер VGA имел 256 Кбайт видеопамяти. Это обеспечило поддержку графических режимов 640×480 при 16-и цветах (640×480/16) и 320×200/256.

В последнем случае используется 8-битная кодировка цвета пиксела, благодаря чему размер текущей палитры равен 256 цветовым оттенкам (именно столько регистров цвета имеет RAMDAC).

Благодаря использованию видеорежима 320×200/256 впервые стало возможно получить изображение, хоть и немного размытое, но весьма реалистичное по цветовой гамме.

В соответствии с традициями IBM видеоадаптер VGA обеспечивал совместимость со всеми видеорежимами предыдущих видеоадаптеров. Дополнительно он поддерживал три новых видеорежима:

    высококачественный текстовый режим 80×25 символов при 16 цветах, разрешение экрана 720×400, размер знакоместа 9×16, частота кадров 70 Гц; графический режим 640×480/16; графический режим 3200×200/256.

6. Адаптер Super VGA.

Первоначально совершенствование видеоадаптера VGA шло в основном за счет увеличения объема его видеопамяти: сначала до 512 Кбайт, а затем и до 1 Мбайт. Появились видеоадаптеры, поддерживающие режимы 800×600, 1024×768 при одновременном отображении 256-и оттенков цветов.

Для работы с такими видеоадаптерами использовались модернизированные мониторы, имеющие уменьшенное зерно люминофора экрана, повышенные частоты синхронизации и более широкую полосу пропускания видеотракта. Возникло понятие видеосистемы Super VGA, под которым поначалу понималось любое расширение возможностей стандарта VGA.

Первой фирмой, изготовившей видеоадаптер, поддерживающий режим 800×600/256, была фирма NEC, а пионером среди видеоадаптеров, поддерживающих разрешение 1024×768, стал видеоадаптер 8514/А фирмы IBM.

Появление многочисленных моделей видеоадаптеров SVGA, изготовленных разными фирмами, породило проблему их совместимости с программным обеспечением.

Причина ее возникновения заключалась в том, что расширенные режимы работы видеоадаптера не поддерживали стандартные способы инициализации: каждая из фирм-производителей использовала свои номера видеорежимов, расширенных относительно VGA, и свои команды инициализации.

Например, режим 800×600/256 у видеоадаптеров фирмы Trident Microsystems имеет номер 5Eh, у видеоадаптеров фирмы Realtek -27h, а у видеоадаптеров фирмы Tseng Labs — 30h. Следовательно, для установки режима 800×600/256 центральный процессор должен послать каждому из этих видеоадаптеров различные команды, что затрудняет создание универсальной программы.

Долгое время нельзя было говорить о Super VGA как о стандарте еще и потому, что не был четко определен смысл самого термина SVGA.

Часто обычный видеоадаптер VGA преподносился продавцами как SVGA только на том основании, что поддерживал видеорежим 800×600/16.

Однако для реализации такого режима необходимо менее 256 Кбайт видеопамяти, поэтому практически любой видеоадаптер VGA, имеющий стандартный объем памяти (256 Кбайт), может поддерживать данный режим.

Стремясь исправить это ненормальное положение, Ассоциация стандартов по видеоэлектронике (Video Electronics Standard Association, VESA) предложила свой стандарт на нумерацию и способ инициализации видеорежимов, расширенных относительно VGA.

Было предложено считать SVGA-режимами только такие, которые требуют для своей реализации не менее 512 Кбайт видеопамяти. Это позволило создавать универсальные программы, предназначенные для работы в режимах с повышенным разрешением, а также решать вопрос принадлежности видеоадаптера к семейству SVGA.

He случайно в течение длительного времени объем видеопамяти был главным критерием качества видеоадаптера SVGA.

Стандарт VESA имел несколько версий, появление которых отражало эволюцию возможностей видеосистемы. Кроме того, в адаптерах SVGA начали использоваться 24-разрядные RAMDAC и прямая кодировка цвета пиксела, благодаря чему появились такие режимы, как High Color (16 бит на пиксел, или 65 536 цветов) и True Color (24 бит на пиксел, или 16 777 216 цветов).

Программы, дополняющие Video BIOS видеоадаптера SVGA для обеспечения поддержки спецификации VESA, получили название VВЕ (VESA BIOS Extension).

Первоначально они использовались в виде драйверов и резидентных программ, загружаемых в память по мере необходимости.

В настоящее время все современные видеоадаптеры содержат VBE в ROM Video BIOS, благодаря чему совместимость со спецификацией VESA обеспечивается автоматически.

С переходом к более высокому разрешению и большей глубине цвета резко увеличилась загрузка центрального процессора PC и шины ввода/вывода. Чтобы разгрузить центральный процессор, решение ряда задач построения изображения (заполнения кадрового буфера) решили возложить на специализированный набор микросхем (Chipset) видеоадаптера, получивший название графического ускорителя (акселератора).

Другим способом повышения производительности видеосистемы и PC в целом стало применение видеоадаптеров с более быстрым интерфейсом, чем ISA.

Первоначально для нужд видеосистемы использовалась 32-разрядная локальная шина VLB (VESA Local Bus), которая в дальнейшем была вытеснена более быстрой и совершенной шиной PCI (Peripheral Component Interconnect — Соединение периферийных устройств).

В настоящее время большинство видеоадаптеров, оснащенных функциями ускорения 2D — и 3D-гpaфики, имеют интерфейс AGP. Последним достижением стал новый графический интерфейс PCI Express.

Источник: https://pandia.ru/text/81/406/87750.php

Refy-free
Добавить комментарий