Теоритические понятие центра тяжести тела

Лекции по статике

Теоритические понятие центра тяжести тела

Лекция 4. Центр тяжести.

В данной лекции рассматриваются следующие вопросы

1. Центр тяжести твердого тела.

2. Координаты центров тяжести неоднородных тел.

3. Координаты центров тяжести однородных тел.

4. Способы определения координат центров тяжести.

5. Центры тяжести некоторых однородных тел.

          Изучение данных вопросов необходимо в дальнейшем для изучения динамики движении тел с учетом трения скольжения и трения качения, динамики движения центра масс механической системы, кинетических моментов, для решения задач в дисциплине «Сопротивление материалов».

Приведение параллельных сил.

После того как было рассмотрено приведение к центру плоской системы и произвольной пространственной системы сил, мы опять возвращаемся к рассмотрению частного случая системы параллельных сил.

Приведение двух параллельных сил.

В ходе рассмотрения такой системы сил возможны три следующих случая приведения.

1. Система двух коллинеарных сил. Рассмотрим систему двух параллельных и направленных в одну сторону сил P и Q, приложенных в точках А и В. Будем считать, что силы перпендикулярны к этому отрезку (рис.1,а).

Выберем в качестве центра приведения точку С, принадлежащую отрезку АВ и удовлетворяющую условию:

АС/СВ = Q/P.                                                   (1)

Главный вектор системы RC = P + Q  по модулю  равен сумме этих сил:  RC = P + Q.

Главный момент относительно центра С  с учетом (1) равен нулю:  MC = PАСQСВ = 0.

Таким образом, в результате приведения мы получили: RC  ≠ 0, MC = 0. Это означает, что главный вектор эквивалентен равнодействующей, проходящей через центр приведения, то есть:

Равнодействующая коллинеарных сил равна по модулю их сумме, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внутренним образом.

Отметим, что положение точки С не изменится, если силы Р и Q повернуть на угол α. Точка С, обладающая таким свойством называется центром параллельных сил.

2. Система двух антиколлинеарных и не равных по модулю сил. Пусть силы P и Q , приложенные в точках А и В, параллельны, направлены в противоположные стороны и по модулю не равны (рис.1,б).

Выберем в качестве центра приведения точку С, удовлетворяющую по-прежнему соотношению (1) и лежащую на той же прямой, но за пределами отрезка АВ.

Главный вектор этой системы  RC = P + Q  по модулю теперь будет равен разности модулей векторов:  RC = Q P.

Главный момент относительно центра С  по-прежнему равен нулю:  MC = PАСQСВ = 0, поэтому

Равнодействующая антиколлинеарных и не равных по модулю сил равна их разности, направлена в сторону большей силы, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внешним  образом.

Рис.1

3. Система двух антиколлинеарных и равных по модулю сил. Возьмем за исходный предыдущий случай приведения. Зафиксируем силу Р, а силу Q  устремим по модулю к силе  Р.

Тогда при Q Р в формуле (1) отношение АС/СВ → 1. Это означает, что  АС СВ , то есть расстояние АС →∞.

При этом модуль главного вектора RC  → 0, а модуль главного момента не зависит от положения центра приведения и остается равным первоначальному значению:

MC = PАСQСВ = P∙(АССВ) = PАB.

Итак, в пределе мы получили систему сил, для которой RC = 0, MC≠0, а центр приведения удален в бесконечность, которую нельзя заменить равнодействующей. В этой системе нетрудно узнать пару сил, поэтому пара сил равнодействующей не имеет.

Центр системы  параллельных сил.

Рассмотрим систему n сил Pi, приложенных в точках Ai (xi, yi, zi)  и параллельных оси Ov c ортом l (рис.2).

Если заранее исключить случай системы, эквивалентной паре сил, нетрудно на основании предыдущего параграфа доказать существование ее равнодействующей R.

Определим координаты центра C(xc, yc, zc) параллельных сил, то есть координаты точки приложения равнодействующей  этой системы.

Воспользуемся с этой целью теоремой Вариньона, на основании которой:

M0 (R) = ΣM0 (Pi).

Рис.2

Вектор-момент силы можно представить в виде векторного произведения, поэтому:                

М0(R) = rc×R = ΣМ0i (Pi)= Σ(ri×Pi).

Учитывая, что R = Rvl, а Pi = Pvilи воспользовавшись свойствами векторного произведения, получим:

rc×Rvl = Σ(ri ×Pvil),

rcRl = Σ(riPvi×l) = Σ(riPvil,

или:                            

[rcRv — Σ(riPvi )]×l = 0.

Последнее выражение справедливо только в том случае, если выражение в квадратных скобках равно нулю. Поэтому, опуская индекс v и учитывая, что равнодействующая R = ΣPi, отсюда получим:

rc = (ΣPi ri)/(ΣPi).

Проектируя последнее векторное равенство на оси координат, получим искомое выражение координат центра параллельных сил:    

xc = (ΣPixi)/( ΣPi);

yc = (ΣPiyi)/( ΣPi);                                              (2)

zc = (ΣPizi)/( ΣPi).

Центр тяжести тел.

Координаты центров тяжести однородного тела.

Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.

Если разбить тело на элементарные части объемом ∆Vi , то на каждую его часть будет действовать сила притяжения ∆Pi, направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.3), и к ней применимы все выводы предыдущей главы.

Рис.3

Определение. Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.

Напомним, что удельным весом элементарной части тела называется отношение ее веса ∆Pi к объему ∆Vi: γi = ∆Pi/∆Vi. Для однородного тела эта величина является постоянной: γi = γ = P/V.

Подставляя в (2) ∆Pi = γi∙∆Vi  вместо Pi, учитывая последнее замечание и сокращая числитель и знаменатель на g, получим выражения координат центра тяжести однородного тела:

xc = (Σ∆Vixi)/(Σ∆Vi);

yc = (Σ∆Viyi)/(Σ∆Vi);                         (3)

zc = (Σ∆Vizi)/(Σ∆Vi).

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой плоско­сти.

Если оси х и у расположить в этой плоскости симметрии, то для каждой точки с координатами  можно отыскать точку с координатами . И координата  по (3), бу­дет равна нулю, т.к. в сумме все члены имеющие противоположные знаки, попарно уничтожаются. Значит центр тяжести расположен в плоскости симметрии.

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

Действительно, в этом случае, если ось z провести по оси симмет­рии, для каждой точки с координатами  можно отыскать точку с координатами   и координаты  и , вычисленные по фор­мулам (3), окажутся равными нулю.

Аналогично доказывается и третья теорема.

3) Если однородное тело имеет центр симметрии, то центр тя­жести тела находится в этой точке.

И ещё несколько замечаний.

Первое. Если тело можно разделить на части, у которых известны вес и положение центра тяжести, то незачем рассматривать каждую точку, а в формулах (3) Pi – определять как вес соответствующей части и   – как координаты её центра тяжести.

Второе. Если тело однородное, то вес отдельной части его , где — удельный вес материала, из которого сделано тело, а Vi — объём этой части тела. И формулы (3) примут более удобный вид. Например,

И аналогично,  где  — объём всего тела.

Третье замечание. Пусть тело имеет вид тонкой пластинки площадью F и толщиной t, лежащей в плоскости Oxy. Подставляя в (3) ∆Vi= t∆Fi, получим координаты центра тяжести однородной пластинки:

xc = (Σ∆Fixi) / (Σ∆Fi);

yc = (Σ∆Fiyi) / (Σ∆Fi).

zc = (Σ∆Fi∙zi) / (Σ∆Fi).

где    – координаты центра тяжести отдельных пластин;  – общая площадь тела.

Четвёртое замечание. Для тела в виде тонкого криволинейного стержня длиной L с площадью поперечного сечения a элементарный объем ∆Vi= a∙∆Li, поэтому координаты центра тяжести тонкого криволинейного стержня будут равны:

xc = (Σ∆Lixi)/(Σ∆Li);

yc = (Σ∆Liyi)/(Σ∆Li);                                 (4)

zc = (Σ∆Lizi)/(Σ∆Li).

где   – координаты центра тяжести i-го участка; .

Отметим, что согласно определению центр тя­жести — это точка геометрическая; она может лежать и вне преде­лов данного тела (например, для кольца).

Примечание.

В этом разделе курса мы не делаем разницы между силой притяжения, силой тяжести и весом тела. В действительности сила тяжести представляет собой разность между силой притяжения Земли и центробежной силой, вызванной ее вращением.

Координаты центров тяжести неоднородных тел.

Координаты центра тяжести неоднородного твердого тела (рис.4) в выбранной системе отсчета определяются следующим образом:

Рис.4

где  — вес единицы объема тела (удельный вес)

 —  вес всего тела.

Если твердое тело представляет собой неоднородную поверхность (рис.5), то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

Рис.5

 где  — вес единицы  площади тела,                  

 —  вес всего тела.

Если твердое тело представляет собой неоднородную линию (рис.6), то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

Рис.6

 где  — вес единицы  длины тела,

—  вес всего тела.

Способы определения координат центра тяжести.

Исходя из полученных выше общих формул,  можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

S=S1+S2.

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки  (без выреза) с площадью S1 и площади вырезанной части S2 .

Рис.9

S=S1-S2.

4. Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса Rс центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату  по формуле . Для этого выделим на дуге АВ элемент ММ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L — длина дуги АВ, равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О, равном

где угол  измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy, координаты вершин которого известны: Ai(xi,yi), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А1А2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А3 М3 (рис.11).

Рис.11

Разбивая треугольник на полоски, параллельные стороне А2А3, можно убедиться, что он должен лежать на медиане А1М1. Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан, которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А1М1 получим, учитывая, что координаты точки М1 — это среднее арифметическое координат вершин А2  и  А3 :

xcx1 + (2/3)∙(xМ1 — x1) = x1 + (2/3)∙[(x2 + x3)/2-x1] = (x1+x2 +x3)/3.

Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

xc =(1/3)Σxiyc =(1/3)Σyi.

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox(рис.12) .

Очевидно, что yc = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом dφ.

С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R×dφ и высотой R.

Площадь такого треугольника dF=(1/2)R2∙dφ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R∙cosφ. Подставляя в (5) F = αR2, получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга.

Подставляя в (2) α = π/2, получим: xc = (4R)/(3π) ≅ 0,4R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Решение. Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:  

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Решение. Координаты центров тяжести:

 0.

Площади:

Поэтому:

Пример 3. У квадратного листа  см вырезано квадратное отверстие  см (рис.15). Найдем центр тяжести листа.

Рис.15

Решение. В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата  так как тело имеет ось симметрии (диагональ).

Пример 4. Найти положение центра тяжести пластинки, представленной на рис. 16. Размеры даны в сантиметрах.

Рис.16

Решение. Разделим пластинку на фигуры (рис. 17), центры тяжести которых известны.

Площади этих фигур и координаты их центров тяжести:

1) прямоугольник со сторонами 30 и 40 см, S1 =30∙40=1200 см2; х1=15 см; у1 =20 см.

2) прямоугольный треугольник с основанием 50 см и высотой 40 см;  S2 =0,5∙50∙40= 1000 см2;  х2=30+50/3=46,7 см;   у2=40/3=13,3 см;

3) половина круга окружности радиусаr=20 см; S3 =0,5∙π∙202 =628 см2; х3 =4R/3π=8,5 см; у3 =20 см.

Координаты центра тяжести пластинки определяются по формулам (площадь половины круга считаем отрицательной)

Рис.17

гдеs площадь всей пластины;sk площади ее частей.

Пример 5. Проволочная скобка (рис.18) состоит из трёх участков оди­наковой длины l.

Рис.18

Решение. Координаты центров тяжести участ­ков:

Поэтому координаты центра тяжести всей скобки:

Пример 6. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.19).

Решение. Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где  g — ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.19

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где Li длина  i-го стержня фермы, а xi, yi  — координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня,  для нее L1 = 4 м, x1 = 0 м, y1= 2 м. Вторая группа стержней состоит из пяти стержней, для нее  L2 = 20 м, x2= 3 м, y2= 2 м.

Координаты центра тяжести фермы находим по формуле:

xc = (L1∙x1 +L2∙x2)/(L1+ L2) = (4∙0 + 20∙3)/24 = 5/2 м;

yc = (L1∙y1 +L2∙y2)/(L1+ L2) = (4∙2 + 20∙2)/24 = 2 м.

Отметим, что центр С лежит на прямой, соединяющей С1 и С2 и делит отрезок С1С2 в отношении: С1С/СС2 = (xcx1)/(x2 — xc) = L2 /L1 = 2,5/0,5.

Вопросы для самопроверки

— Что называется центром параллельных сил?

— Как определяются координаты центра параллельных сил?

— Как определить центр параллельных сил, равнодействующая которых равна нулю?

— Каким свойством обладает центр параллельных сил?

— По каким формулам вычисляются координаты центра параллельных сил?

— Что называется центром тяжести тела?

— Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

— Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

— Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

— Что называют статическим моментом площади?

— Приведите пример тела, центр тяжести которого расположен вне тела.

— Как используются свойства симметрии при определении центров тяжести тел?

— В чем состоит сущность способа отрицательных весов?

— Где расположен центр тяжести дуги окружности?

— Каким графическим построением можно найти центр тяжести треугольника?

— Запишите формулу, определяющую центр тяжести кругового сектора.

— Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

— По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

— Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

— Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

— Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

email: KarimovI@rambler.ru

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

Строительная механика   Сопротивление материалов

Прикладная механика  Детали машин  Теория машин и механизмов

Источник: http://www.teoretmeh.ru/statika4.htm

Теоретическое понятие центра тяжести тела

Теоритические понятие центра тяжести тела

Теоретическое понятие центра тяжести тела.

Рассмотрим сложение параллельных сил. Представим, что к трём точкам А1, А2 и А3 твердого тела приложены параллельные силы ,  и , образующие пространственную систему. Равнодействующая двух параллельных сил равна по модулю сумме их модулей, а линия действия делит расстояние между точками приложения слагаемых сил на отрезки, обратно пропорциональные силам (рис. 1).

Точка С, через которую проходит линия действия равнодействующей системы параллельных сил, называется центром параллельных сил.

Формулы координат центра параллельных сил имеют вид:

; ; . (1)

При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести. Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы.

Силу тяжести элементарной частицы тела с индексом i от действия на нее Земли обозначим через ΔРi;, а силу тяжести всего тела – через Р. Силы тяжести элементарных частиц тела направлены приближенно к центру Земли, т. е. образуют систему сходящихся сил.

Если размеры рассматриваемого тела малы по сравнению с размерами земного шара, то силы тяжести элементарных частиц тела можно считать системой параллельных сил, направленных в одну сторону.

Центром тяжести тела называют центр системы параллельных сил, которую приближенно образуют силы тяжести его элементарных частиц.

Радиус-вектор центра тяжести тела вычисляем как радиус-вектор центра параллельных сил (рис. 2) по формуле

      (2)

где  – радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку;  –  сила тяжести элементарной частицы;  –  сила тяжести всего тела; п –  число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.

Если в (2) перейти к пределу, увеличивая число элементарных частей п до бесконечности, то после замены ; дифференциалом dP, а суммы – интегралом получим:

                  (3)

где  – радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (2) и (3) получаем:

где xc, yc, zc – координаты центра тяжести; xi, yi, zi — координаты точки приложения силы тяжести .

Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы Δmi и М и ускорение силы тяжести g с помощью формул

Подставляя эти значения сил тяжести в (2) и (3) после сокращения на g, которое принимаем одинаковым для всех частей тела, имеем

            (4)

и соответственно

       (5)

По формулам (4) и (5) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор которой вычисляется по формулам (4) или (5). В проекциях на оси координат из (4) и (5) получаем:

где хс, уc, zc – координаты центра масс тела.

Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам

где – объем элементарной частицы тела; и  – соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела

где  – объем тела. Подставляя эти значения в (4) и (5), после сокращения на и  соответственно получим формулы

     и     

по которым определяют центр тяжести объема тела.

Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа  железа, то имеем

где  – удельный вес; – площадь элементарной частицы поверхности; S – площадь всей поверхности. После сокращения на  для однородной поверхности получим следующие формулы для определения центра тяжести её площади:

     и     

Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины  линии по формулам

     и     

где  – длина элемента линии; l – общая длина линии, центр тяжести которой определяется.

При решении задачи нахождения центра тяжести плоской фигуры используется понятие статического момента площади относительно оси. Это алгебраическая сумма произведений площадей частей плоской фигуры на расстояние их центров тяжести до оси:  и . Тогда, если А – площадь всей плоской фигуры,

; .

МЕТОДЫ ОПРЕДЕЛЕНИЯ ЦЕНТРОВ ТЯЖЕСТИ (ЦЕНТРОВ МАСС)

1. Метод симметрии. При определении центров тяжести широко используется симметрия тел. Для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии Аналогично для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на  оси симметрии или в центре симметрии.

Примеры:

  1. дуга  (рис. 3, а.)
  2. треугольник – центр пересечения медиан  (рис. 3, б.)
  3. круговой сектор  (рис. 3, в.)
  4. параболический треугольник   (рис. 3, г)
  5. конус  (рис. 3, д.)

2. Метод разбиения на части (метод группировки). Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны или предварительно могут быть определены.

В таких случаях центры тяжести сложных тел вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Покажем это на частном примере плоской фигуры, изображенной на рис. 4.

Плоскую фигуру можно разбить на три части, центры тяжести которых С1, С2 и С3 известны. Они находятся на пересечении диагоналей прямоугольников. Их радиусы-векторы обозначим  и площади  Общая площадь сложной фигуры будет

Используя определение центра тяжести и производя группировку слагаемых под знаком суммы по частям фигуры, на которые она разбита, получим.

Радиусы-векторы центров тяжести частей тела выразятся в такой форме:

или

Используя эти формулы для радиуса-вектора всей фигуры, имеем

Полученная формула имеет ту же структуру, что и формула, определяющая радиус-вектор центра тяжести тела при разбиении его на элементарные частицы, только в нее входят величины для конечных частей тела.

3. Метод отрицательных масс. Видоизменением метода разбиения на части является метод отрицательных масс. Проиллюстрируем его тоже на примере плоской фигуры (рис. 5). Для определения центра тяжести этой фигуры ее можно разбить на три части. Можно поступить по-другому.

Для этого дополним нашу фигуру до прямоугольника и примем, что этот прямоугольник с площадью S1 и центром масс С1 полностью заполнен массой (имеет положительную площадь). На той части фигуры, которую добавили, следует распределить отрицательную массу (отрицательную площадь) той же плотности. Площадь этой фигуры с отрицательной массой обозначим S2, а ее центр масс – С2.

Применяя метод разбиения на части, радиус-вектор заданной фигуры определим по формуле

В отличие от обычного метода разбиения на части в данной формуле массы и, следовательно, площади входят со знаком минус. Метод отрицательных масс особенно удобен при вычислении положения центров тяжести тел, имеющих отверстия.

4. Способ подвешивания. Данный способ рассматривается ниже.

Источник: http://znakka4estva.ru/dokumenty/fizika-i-energetika/teoreticheskoe-ponyatie-centra-tyazhesti-tela/

Понятие центра тяжести

Теоритические понятие центра тяжести тела

На каждую частицу тела, находящегося вблизи поверхности Земли, действует сила притяжения, называемая силой тяжести. Все эти силы, строго говоря, направлены к центру Земли, но так как размеры тела невелики по сравнению с радиусом Земли, то направления этих сил практически будут параллельны и направлены вертикально вниз.

Силой тяжести тела называется равнодействующая всех сил тяжести, действующих на частицы тела. Обозначим силы тяжести, приложенные к частицам тела, их равнодействующую обозначим .

Центром тяжести тела называется точка С приложения силы тяжести тела.

При любом повороте тела силы остаются приложенными в одних и тех же точках и параллельными друг другу, но изменяется их направление относительно тела. Неизменным остается также положение центра тяжести относительно тела.

Определим положение центра тяжести тела относительно произвольно выбранной точки О. Соединим (рис.35) радиусами -векторами с точкой О точки приложения сил тяжести всех частиц и центр тяжести тела. Запишем теорему Вариньона:

так как , то или

Выберем единичный вектор определяющий направление сил тяжести. Тогда : Подставим эти значения в предыдущее равенство: В этом выражении Р и рk являются скалярными коэффициентами, поэтому их можно поставить перед векторами и , вектор можно вынести за скобки, получим

Как было отмечено выше, при повороте тела силы тяжести поворачиваются относительно него на один и тот же угол, а центр тяжести С сохраняет положение неизменным. Эту же ситуацию можно смоделировать (рис.

36), повернув все силы тяжести на один и тот же угол вокруг точек приложения, оставив при этом тело неподвижным. Тогда единичный вектор изменит свое направление, и поэтому в общем случае он не будет параллелен вектору .

Так как вектор не равен нулю, то векторное произведение векторов и будет равно нулю только тогда, когда вектор будет равен нулю: Отсюда определяем значение радиуса — вектора центра тяжести тела.

Свяжем с точкой С систему координат xyz . Тогда координаты цента тяжести в этом системе координат определяются следующими формулами:

где — координаты точек приложения сил тяжести , действующих на частицы тела.

Для однородного тела сила тяжести любой его части пропорциональна объему этой части: pk=g , а сила тяжести тела Р пропорциональна объему V этого тела: P=g V.

Подставив значения Р и рк в формулы координат центра тяжести, получим:

Положение центра тяжести тела, как следует из полученных формул, зависит только от геометрической формы тела, поэтому точку С называют центром тяжести объема.

Аналогично определим центр тяжести однородной плоской пластины, расположенной в плоскости ху:

где S – площадь всей пластины, sk – площади ее частей.

Точно также получаются координаты центра тяжести однороднойлинии:

,

где L – длина всей линии, lk – длины ее частей.

Если однородное тела имеет плоскость, ось или центр симметрии, то его центр тяжести лежит в плоскости, на оси или в центре симметрии.

Отсюда следует, что центр тяжести однородного стержня лежит в его середине, центр тяжести круглого кольца, круглой или прямоугольной пластины, шара находится в соответствующем геометрическом центре.

Центры тяжести ромба, параллелограмма лежат в точках пересечения их диагоналей.

Для определения центра тяжести тело разбивается на конечное число частей, положение центра тяжести каждой из которых известно. Координаты центра тяжести тела вычисляются по общим формулам.

В тех случаях, когда данное тела имеет отверстия, его можно представить как разность тел, в этом случае сила тяжести большего тела считается положительной величиной, а сила тяжести меньшего – отрицательной.

Если тело нельзя разбить на несколько конечных частей, положения центров тяжести которых известны, то тело разбивают на бесконечно большое элементарных частиц и положение центра тяжести тела определяется интегрированием. В этом случае координаты центра тяжести однородного твердого тела равны:

, ,

где V – объем всего тела.

В случае однородной плоской фигуры, расположенной в плоскости ху:

,

где S – площадь всей фигуры.

Для однородной линии, длина которой равна L, координаты центра тяжести равны:

Предыдущая123456789Следующая

Дата добавления: 2016-02-13; просмотров: 845; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/7-2588.html

Теоритические понятие центра тяжести тела (стр. 1 из 2)

Теоритические понятие центра тяжести тела

ТЕОРЕТИЧЕСКОЕ ПОНЯТИЕ ЦЕНТРА ТЯЖЕСТИ ТЕЛА.

Рассмотрим сложение параллельных сил. Представим, что к трём точкам А1, А2 и А3 твердого тела приложены параллельные силы , и , образующие пространственную систему. Равнодействующая двух параллельных сил равна по модулю сумме их модулей, а линия действия делит расстояние между точками приложения слагаемых сил на отрезки, обратно пропорциональные силам (рис. 1).

Точка С, через которую проходит линия действия равнодействующей системы параллельных сил, называется центром параллельных сил.

Формулы координат центра параллельных сил имеют вид:

; ; . (1)

При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести. Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы.

Силу тяжести элементарной частицы тела с индексом i от действия на нее Земли обозначим через ΔРi;, а силу тяжести всего тела – через Р. Силы тяжести элементарных частиц тела направлены приближенно к центру Земли, т. е. образуют систему сходящихся сил.

Если размеры рассматриваемого тела малы по сравнению с размерами земного шара, то силы тяжести элементарных частиц тела можно считать системой параллельных сил, направленных в одну сторону.

Центром тяжести тела называют центр системы параллельных сил, которую приближенно образуют силы тяжести его элементарных частиц.

Радиус-вектор центра тяжести тела

вычисляем как радиус-вектор центра параллельных сил (рис. 2) по формуле (2)

где

– радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку; – сила тяжести элементарной частицы; – сила тяжести всего тела; п – число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.

Если в (2) перейти к пределу, увеличивая число элементарных частей п до бесконечности, то после замены

; дифференциалом dP, а суммы – интегралом получим: (3)

где

– радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (2) и (3) получаем:

где xc, yc, zc координаты центра тяжести; xi, yi, zi — координаты точки приложения силы тяжести

.

Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы Δmi и М и ускорение силы тяжести g с помощью формул

Подставляя эти значения сил тяжести в (2) и (3) после сокращения на g, которое принимаем одинаковым для всех частей тела, имеем

(4)

и соответственно

(5)

По формулам (4) и (5) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор которой вычисляется по формулам (4) или (5). В проекциях на оси координат из (4) и (5) получаем:

где хс, уc, zc – координаты центра масс тела.

Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам

где

– объем элементарной частицы тела; и – соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела

где

– объем тела. Подставляя эти значения в (4) и (5), после сокращения на и соответственно получим формулы и

по которым определяют центр тяжести объема тела.

Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа железа, то имеем

где

– удельный вес; – площадь элементарной частицы поверхности; S – площадь всей поверхности. После сокращения на для однородной поверхности получим следующие формулы для определения центра тяжести её площади: и

Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины линии по формулам

и

где

– длина элемента линии; l – общая длина линии, центр тяжести которой определяется.

При решении задачи нахождения центра тяжести плоской фигуры используется понятие статического момента площади относительно оси. Это алгебраическая сумма произведений площадей частей плоской фигуры на расстояние их центров тяжести до оси: и . Тогда, если А – площадь всей плоской фигуры,

; .

МЕТОДЫ ОПРЕДЕЛЕНИЯ ЦЕНТРОВ ТЯЖЕСТИ (ЦЕНТРОВ МАСС)

1. Метод симметрии. При определении центров тяжести широко используется симметрия тел. Для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии Аналогично для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на оси симметрии или в центре симметрии.

Примеры:

1) дуга (рис. 3, а.)

2) треугольник – центр пересечения медиан (рис. 3, б.)

3) круговой сектор (рис. 3, в.)

4) параболический треугольник (рис. 3, г)

5) конус (рис. 3, д.)

Источник: https://mirznanii.com/a/323854/teoriticheskie-ponyatie-tsentra-tyazhesti-tela

Реферат: Теоритические понятие центра тяжести тела

Теоритические понятие центра тяжести тела

ТЕОРЕТИЧЕСКОЕ ПОНЯТИЕ ЦЕНТРА ТЯЖЕСТИ ТЕЛА.

Рассмотрим сложение параллельных сил. Представим, что к трём точкам А1 , А2 и А3 твердого тела приложены параллельные силы , и , образующие пространственную систему. Равнодействующая двух параллельных сил равна по модулю сумме их модулей, а линия действия делит расстояние между точками приложения слагаемых сил на отрезки, обратно пропорциональные силам (рис. 1).

Точка С, через которую проходит линия действия равнодействующей системы параллельных сил, называется центром параллельных сил.

Формулы координат центра параллельных сил имеют вид:

; ; . (1)

При рассмотрении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра тяжести. Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы.

Силу тяжести элементарной частицы тела с индексом i от действия на нее Земли обозначим через ΔРi ; , а силу тяжести всего тела – через Р. Силы тяжести элементарных частиц тела направлены приближенно к центру Земли, т. е. образуют систему сходящихся сил.

Если размеры рассматриваемого тела малы по сравнению с размерами земного шара, то силы тяжести элементарных частиц тела можно считать системой параллельных сил, направленных в одну сторону.

Центром тяжести тела называют центр системы параллельных сил, которую приближенно образуют силы тяжести его элементарных частиц.

Радиус-вектор центра тяжести тела вычисляем как радиус-вектор центра параллельных сил (рис. 2) по формуле

(2)

где – радиус-вектор точки приложения силы тяжести элементарной части тела, принятой за точку; – сила тяжести элементарной частицы; – сила тяжести всего тела; п – число частей, на которое мысленно разбито все тело. Центр тяжести является точкой приложения равнодействующей силы тяжести, если силы тяжести отдельных его частей считать системой параллельных сил.

Если в (2) перейти к пределу, увеличивая число элементарных частей п до бесконечности, то после замены ; дифференциалом dP , а суммы – интегралом получим:

(3)

где – радиус-вектор элементарной части тела, принятой за точку. В проекциях на оси координат из (2) и (3) получаем:

где xc , yc , zc координаты центра тяжести; xi , yi , zi — координаты точки приложения силы тяжести .

Используя понятие центра тяжести тела, введем понятие его центра масс . Силы тяжести элементарных частей тела и всего тела можно выразить через их массы Δmi и М и ускорение силы тяжести g с помощью формул

Подставляя эти значения сил тяжести в (2) и (3) после сокращения на g, которое принимаем одинаковым для всех частей тела, имеем

(4)

и соответственно

(5)

По формулам (4) и (5) определяют радиус-вектор центра масс тела. Центр масс обычно определяют независимо от центра тяжести как геометрическую точку, радиус-вектор которой вычисляется по формулам (4) или (5). В проекциях на оси координат из (4) и (5) получаем:

где хс , уc , zc – координаты центра масс тела.

Для однородного тела силу тяжести элементарной частицы тела и ее массу можно вычислить по формулам

где – объем элементарной частицы тела; и – соответственно удельный вес и плотность тела. Сила тяжести и масса всего тела

где – объем тела. Подставляя эти значения в (4) и (5), после сокращения на и соответственно получим формулы

и

по которым определяют центр тяжести объема тела.

Если тело имеет форму поверхности, т. е. один из размеров мал по сравнению с двумя другими, как, например, у тонкого листа железа, то имеем

где – удельный вес; – площадь элементарной частицы поверхности; S – площадь всей поверхности. После сокращения на для однородной поверхности получим следующие формулы для определения центра тяжести её площади:

и

Для однородных тел типа проволоки, у которых два размера малы по сравнению с третьим, можно определить радиус-вектор центра тяжести длины линии по формулам

и

где – длина элемента линии; l – общая длина линии, центр тяжести которой определяется.

При решении задачи нахождения центра тяжести плоской фигуры используется понятие статического момента площади относительно оси. Это алгебраическая сумма произведений площадей частей плоской фигуры на расстояние их центров тяжести до оси: и . Тогда, если А – площадь всей плоской фигуры,

; .

МЕТОДЫ ОПРЕДЕЛЕНИЯ ЦЕНТРОВ ТЯЖЕСТИ (ЦЕНТРОВ МАСС)

1. Метод симметрии. При определении центров тяжести широко используется симметрия тел. Для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии Аналогично для однородного тела, имеющего ось или центр симметрии, центр масс находится соответственно на оси симметрии или в центре симметрии.

Примеры:

1) дуга (рис. 3, а.)

2) треугольник – центр пересечения медиан (рис. 3, б.)

3) круговой сектор (рис. 3, в.)

4) параболический треугольник (рис. 3, г)

5) конус (рис. 3, д.)

2. Метод разбиения на части (метод группировки). Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны или предварительно могут быть определены.

В таких случаях центры тяжести сложных тел вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Покажем это на частном примере плоской фигуры, изображенной на рис. 4.

Плоскую фигуру можно разбить на три части, центры тяжести которых С1 , С2 и С3 известны. Они находятся на пересечении диагоналей прямоугольников. Их радиусы-векторы обозначим и площади Общая площадь сложной фигуры будет

Используя определение центра тяжести и производя группировку слагаемых под знаком суммы по частям фигуры, на которые она разбита, получим.

Радиусы-векторы центров тяжести частей тела выразятся в такой форме:

или

Используя эти формулы для радиуса-вектора всей фигуры, имеем

Полученная формула имеет ту же структуру, что и формула, определяющая радиус-вектор центра тяжести тела при разбиении его на элементарные частицы, только в нее входят величины для конечных частей тела.

3. Метод отрицательных масс. Видоизменением метода разбиения на части является метод отрицательных масс. Проиллюстрируем его тоже на примере плоской фигуры (рис. 5). Для определения центра тяжести этой фигуры ее можно разбить на три части. Можно поступить по-другому.

Для этого дополним нашу фигуру до прямоугольника и примем, что этот прямоугольник с площадью S 1 и центром масс С 1 полностью заполнен массой (имеет положительную площадь). На той части фигуры, которую добавили, следует распределить отрицательную массу (отрицательную площадь) той же плотности.

Площадь этой фигуры с отрицательной массой обозначим S 2 , а ее центр масс – С2 . Применяя метод разбиения на части, радиус-вектор заданной фигуры определим по формуле

В отличие от обычного метода разбиения на части в данной формуле массы и, следовательно, площади входят со знаком минус. Метод отрицательных масс особенно удобен при вычислении положения центров тяжести тел, имеющих отверстия.

4. Способ подвешивания. Данный способ рассматривается ниже.

Источник: https://www.bestreferat.ru/referat-296113.html

Тема 1.5. Центр тяжести тела — Техническая механика

Теоритические понятие центра тяжести тела

§1. Центр тяжести однородного тела.

Рассмотрим твердое тело весом P и объемом в системе координат Oxyz , где оси и y связаны с поверхностью земли, а ось z направлена в зенит.

Если разбить тело на элементарные части объемом ∆Vi , то на каждую его часть будет действовать сила притяжения ∆Pi, направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.1), и к ней применимы все выводы предыдущей главы.

Рис.1. Параллельная система сил

Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой 

плоско­сти.

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

3) Если однородное тело имеет центр симметрии, то центр тя­жести тела находится в этой точке.

                                §2. Способы определения координат центра тяжести.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.2), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.2. Центр тяжести тел, имеющих ось симметрии 

2. Разбиение. Тело разбивается на конечное число частей (рис.3), для каждой из которых положение центра тяжести и площадь известны.

Рис.3. Центр тяжести сплошной 

сложной геометрической фигуры

  — центр тяжести и площадь первой фигуры; 

 — центр тяжести и площадь второй фигуры;

 — координата центра тяжести сплошной сложной геометрической фигуры по оси x;

  — координата центра тяжести сплошной сложной геометрической фигуры по оси y;

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.4). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки  (без выреза) с площадью S1 и площади вырезанной части S2 .

Рис.4.  Центр тяжести сложной геометрической фигуры,

 имеющей отверстие

  — центр тяжести и площадь первой фигуры; 

 — центр тяжести и площадь второй фигуры;

 — координата центра тяжести сложной геометрической фигуры по оси x;

 — координата центра тяжести сложной геометрической фигуры по оси y

         §3.  Координаты центра тяжести некоторых простых фигур.

1. Центр тяжести тре­угольника. Центр тяжести треугольника лежит в точке пересечения его медиан (рис.5). Координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:  xc =1/3(x1+x2+x3) ;  yc =1/3(y1+y2+y3).

Рис.5. Центр тяжести треугольника

2. Центр тяжести прямоугольника. Центр тяжести прямоугольника лежит в точке пересечения его диагоналей (рис.6). Координаты центра тяжести прямоугольника рассчитываются по формулам:  xc =b/2 ;  yc =h/2.

Рис. 6. Центр тяжести треугольника

    3. Центр тяжести полукруга. Центр тяжести полукруга лежит на оси симметрии (рис.7). Координаты центра тяжести полукруга рассчитываются по формулам:  xc =D/2 ;  yc =4R/3π.

                                                                                     Рис. 7. Центр тяжести полукруга

      4. Центр тяжести круга. Центр тяжести круга лежит в центре (рис.8). Координаты центра тяжести круга рассчитываются по формулам:  xc =R ;  yc =R.

                                                                                            Рис. 8. Центр тяжести круга

Вопросы для самопроверки:

— Что называется центром параллельных сил?

— Что называется центром тяжести тела?

— Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

— Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

— Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, квадрата, трапеции и половины круга?

— Как используются свойства симметрии при определении центров тяжести тел?

— В чем состоит сущность способа отрицательных площадей?

— Каким графическим построением можно найти центр тяжести треугольника?

— Запишите формулу, определяющую центр тяжести треугольника.

Источник: https://www.sites.google.com/site/tehmehprimizt/lekcii/teoreticeskaa-mehanika/statika/centr-tazesti

Центр тяжести тела — формулы и примеры нахождения

Теоритические понятие центра тяжести тела

Пусть имеется физическое тело, на которое не оказывается влияние, то есть другие объекты не действуют или их силы воздействия скомпенсированы. Рассматриваемое тело будет находиться в состоянии прямолинейного движения или покоя. Для удобства можно принять, что объект неподвижен, например, пусть это будет лодка на поверхности воды.

Если к плавательному средству приложить силу, смещённую к началу лодки F1, судно начнёт поворачиваться в сторону направления воздействия.

Если ее переместить в горизонтальной плоскости в другой конец судна, лодка начнёт также поворачиваться, но направление вращения изменится.

Отсюда можно сделать вывод, что существует такая точка приложения силы, точнее, линия, при воздействии на которую лодка не изменит своего положения, то есть плавательное средство начнёт двигаться ускоренно поступательно. Допустим, это будет сила F3.

Логично, что можно подобрать и другую силу, вызывающую поступательное прямолинейное перемещение, например, F4.

При этом точку воздействия можно перемещать по линии её направления, так как, согласно правилу, величина действия при этом не изменяется. В итоге получится точка, где пересекутся приложенные силы F3 и F4.

Таких моментов можно приложить сколько угодно, при этом они все соединятся в одном месте. Точку пересечения линий действия сил, которые вызывают ускоренное поступательное движение тела, называют центром масс.

На лодку действует ещё одна сила —притяжения.

На самом деле она воздействует на каждую частичку объекта, поэтому на тело одновременно оказывает влияние огромное количество моментов.

Это множество и принято заменять их равнодействующей — то есть силой, приложенной к центру тяжести. В физике параметр обозначают как mg. Другими словами, это точка приложения равнодействующих сил тяжести.

Существует взаимосвязь между массой и тяжестью. Если тело разбить на кусочки и бросить их, скорость падения будет для всех тел одинаковой, так как ускорение не зависит от массы. При этом падающий объект движется поступательно.

А значит, приложенная сила проходит через центр масс, то есть через центр тяжести, поэтому несмотря на разный принцип определения этих точек, их положение совпадает.

Поиск центра тяжести

Чтобы определить центр тяжести для тела сложной формы, его нужно разделить на простые фигуры и определить точки равновесия для каждой из них. Для простых геометрических объектов используют симметрию.

Например, в шаре параметр располагается в центре, в однородном цилиндре — в точке на середине оси. Частным случаем разбиения фигуры при определении является метод отрицательных площадей.

Его применяют к телам, которые имеют вырезы, и при этом площадь удалённой части известна.

Вот формулы для вычисления центра в некоторых фигурах:

  1. В треугольнике: x = (1/3) * (x1 + x2 + x3); y = (1/3) * (y1 + y2 + y3). Физически центр находится в точке пересечения медиан и представляет собой среднее арифметическое из координат вершин.
  2. В прямоугольнике: x = b/2; y = h/2. Центр равновесия располагается в точке пересечения диагональных прямых.
  3. В полукруге: x =D/2; y = 4R/3π. Искомая точка лежит на оси симметрии.
  4. В круге: x = R; y = R. Точка тяжести находится в центре фигуры.

Стоит отметить, что центр тяжести объёмных тел может находиться и вне фигуры, например, как у кольца.

Вообще же для трёхмерного пространства, как учат на уроках физики в 7 классе, центр тяжести тела вычисляют по формулам: x = (ΣΔ m * x) / m; y = (ΣΔ m * y) / m; z = (ΣΔ m * z) / m, где: m — масса тела, x, y, z — координаты искомой точки в пространстве. Уравнение можно переписать и в векторной форме: r = (1 / m) Σm * r, где r — радиус вектор.

Существует и ряд теорем, благодаря которымможно определить точку массы в теле:

  1. При рассмотрении однородного тела, имеющего плоскость симметрии, центр массы будет находиться в этой плоскости.
  2. Если однородное тело обладает осью симметрии, центр располагается на ней.
  3. Центр симметрии однородной фигуры совпадает с центром массы.
  4. Центр масс симметричных фигур находится в их геометрическом центре.

Точку равновесия фигуры можно находить и через объём: R = (1 / V) * ∫ ∫ ∫rdV. Для плоских объектов используется формула R = (1 / S) * ∫ ∫ ∫rdS, а однородной линии R = (1 / L) * ∫ ∫ ∫rdL. Стоит отметить, что понятие точки тяжести применимо только к твёрдым объектам. Если это не так, использование понятия не имеет смысла.

Пример задания

Теоретический материал лучше всего усваивается на практических заданиях. Не исключение и понятие о центре тяжести. Тема несложная, но при нахождении параметра желательно фигуру изобразить на рисунке.

Наиболее часто ученикам преподаватель предлагает решить задачу о нахождении центра масс сложного тела, но при этом достаточно симметричного. Например, пусть имеется диск из однородной пластины, в котором вырезан кусок треугольной формы. Необходимо найти центр равновесия оставшегося объекта.

Если нарисовать условие задачи, станет понятно, что треугольник прямоугольный, а центр масс находится на горизонтальной прямой, проходящей через середину диска. Пусть это будет ось x. Чтобы решить задачу, нужно разбить сложную фигуру на несколько частей, в каждой из которых можно найти искомую точку.

Симметрично удалённому треугольнику можно выделить аналогичную часть. В итоге останется круг с вырезанным внутри квадратом. Точка масс диска находится в центре. Для удобства её можно обозначить как x1. Вторая фигура — это треугольник. Точка равновесия у него находится на пересечении медиан. То есть на 1/3 высоты. Обозначить точку можно как x2.

Если масса треугольника равна М2, а круга М1, искомую координату можно определить по формуле: x = (m1x1 + m2x2) / m1 + m2. Далее, нужно найти, чему равняется сторона вырезанного треугольника. Из рисунка можно понять, что это расстояние будет r * √2, где r — радиус диска.

Теперь можно найти, чему будут равны x1 и x2. x1 будет равняться нулю, так как эту точку можно принять за начало координат. x2 же будет равняться 1/3 длины медианы. Высота фигуры совпадает с радиусом диска, значит: x2 = R/3.

В таких задачах самое сложное — это найти массы. Первую можно определить исходя из того, что она будет равняться массе диска минус значение квадрата. Так как фигура однородная, масса прямо пропорциональна площади.

Тогда для первого участка m1 = σ * S = σ * (Sкруга — Sквадрата) = σ * (pR2 — 2R2) = σR2 * (p — 2), где: σ — поверхностная площадь. Соответственно, m2 = σ * Sтреугольника = σ * R2.

Все найденные величины нужно подставить в формулу и найти ответ: x = ((r * σ * R2 /3)) / (σ * R2 * (p — 2) + σ * R2) = (r / 3 (p — 1)). Это и будет искомая координата.

Простая задачка

Пусть имеются 2 шара. Они расположены так, что соприкасаются друг с другом. Сделаны тела из одного материала, но при этом радиусы у них отличаются вдвое. Значение первого равняется r = 20 см, а второго 40, то есть 2r.

Найти, где находится точка равновесия такого объекта. Такого рода задачи обычно любят демонстрировать на презентациях, касающихся темы.

Задача простая, но между тем помогает понятьпринцип нахождения центра равновесия.

Итак, при решении нужно будет воспользоваться формулой: x = (m1x1 + m2x2) / m1 + m2. Так как по условию радиусы шаров отличаются вдвое, их массы будут отличаться в 8 раз. Объём всегда пропорционален кубу линейных размеров.

Массу первого шара можно обозначить как m, а второго — 8m. Начало координат для удобства лучше поместить в центр меньшей фигуры. В результате середина большого шара будет иметь координату 3r. Значит, искомая координата равняется: x = ((m* 0 + 8m * 3r)) / (m + 8m) = (8 * 3r) / 9 = 8r/3.

То есть нужная точка находится на расстоянии 1/3 радиуса ближе к маленькому шару (если отсчитывать от середины большого).

Источник: https://nauka.club/fizika/tsentr-tyazhesti-tela.html

13. Центр тяжести твердого тела; центр тяжести объема, площади и линии. Способы определения положения центров тяжести тел

Теоритические понятие центра тяжести тела

Центромтяжести твердоготела называется геометрическая точка,жестко связанная с этим телом, и являющаясяцентром параллельных сил тяжести,приложенных к отдельным элементарнымчастицам тела (рисунок 1.6).

Радиус-векторэтой точки

Рисунок1.6

Дляоднородного тела положение центратяжести тела не зависит от материала,а определяется геометрической формойтела.

Еслиудельный вес однородного тела  γ,вес элементарной частицы тела 

Pk = γΔV(P = γV)подставить в формулу для определения rC,имеем

Откуда,проецируя на оси и переходя к пределу,получаем координаты центра тяжестиоднородного объема

Аналогичнодля координат центра тяжести однороднойповерхности площадью S (рисунок 1.7, а)

Рисунок1.7

Длякоординат центра тяжести однороднойлинии длиной L (рисунок 1.7, б)

Способыопределения координат центра тяжести

Исходяиз полученных ранее общих формул, можноуказать способы определения координатцентров тяжести твердых тел:

Аналитический (путеминтегрирования).

Методсимметрии.Если тело имеет плоскость, ось или центрсимметрии, то его центр тяжести лежитсоответственно в плоскости симметрии,оси симметрии или в центре симметрии.

Экспериментальный (методподвешивания тела).

Разбиение.Тело разбивается на конечное числочастей, для каждой из которых положениецентра тяжести C и площадь  S известны.Например, проекцию тела на плоскость xOy (рисунок 1.

8) можно представить в видедвух плоских фигур с площадями S1 и  S2 (S= S1+ S2).

Центры тяжести этих фигур находятся вточках  C1(x1,y1) и C2(x2, y2).Тогда координаты центра тяжести теларавны

Рисунок1.8

5Дополнение (методотрицательных площадей или объемов).Частный случай способа разбиения. Онприменяется к телам, имеющим вырезы,если центры тяжести тела без выреза ивырезанной части известны. Например,необходимо найти координаты центратяжести плоской фигуры (рисунок 1.9):

Рисунок1.9

Центры тяжести простейших фигур

Рисунок1.10

1Треугольник

Центртяжести площади треугольник совпадаетс точкой пересечения его медиан (рисунок1.10, а).

 DM= MBCM=(1/3)AM.

2Дуга окружности

Дугаимеет ось симметрии (рисунок 1.10, б). Центртяжести лежит на этой оси, т.е.  yC=0.

dl  –элемент дуги,  dl = RdφR –радиус окружности,  x= RcosφL=2αR,

Следовательно:

 xC=R(sinα/α).

3Круговой сектор

Секторрадиуса  R сцентральным углом  2α имеетось симметрии  Ox,на которой находится центр тяжести(рисунок 1.10, в). 

Разбиваемсектор на элементарные секторы, которыеможно считать треугольниками. Центрытяжести элементарных сектороврасполагаются на дуге окружности радиуса (2/3)R

Центртяжести сектора совпадает с центромтяжести дуги  AB:

14.Способы задания движения точки.

Привекторном способе задания движенияположение точки определяетсярадиус-вектором, проведенным изнеподвижной точки в выбранной системеотсчета. 

Прикоординатном способе задания движениязадаются координаты точки как функциивремени:

Этопараметрические уравнения траекториидвижущейся точки, в которых роль параметраиграет время t.Чтобы записать ее уравнение в явнойформе, надо исключить из них  t.

Приестественном способе задания движениязадаются траектория точки, началоотсчета на траектории с указаниемположительного направления отсчета,закон изменения дуговой координаты: s=s(t) .Этим способом удобно пользоваться, еслитраектория точки заранее известна.

15.1.2Скорость точки

Рассмотримперемещение точки за малый промежутоквремени  Δt:

тогда 

средняяскорость точки за промежуток времени Dt .Скорость точки в данный момент времени

Скоростьточки –это кинематическая мера ее движения,равная производной по времени отрадиус-вектора этой точки в рассматриваемойсистеме отсчета. Вектор скоростинаправлен по касательной к траекторииточки в сторону движения.

Источник: https://studfile.net/preview/3016167/page:3/

Техническая механика

Теоритические понятие центра тяжести тела


Центром параллельных сил называется такая точка на линии действия равнодействующей системы параллельных сил, через которую проходит равнодействующая и в том случае, если все силы системы повернуть вокруг их точек приложения на один и тот же угол, сохраняя параллельность сил.

Покажем существование центра параллельных сил на системе двух сил F1 и F2 (см. рисунок 1). На основании теоремы о сложении двух параллельных сил, направленных в одну сторону, определим равнодействующую этих сил и положение линии ее действия по формулам:

FΣ = F1 + F2;    F1/F2 = BC/AC.

Нетрудно увидеть, что точка С, лежащая на линии АВ, соединяющей точки приложения данных сил, является центром двух параллельных сил F1 и F2, так как при повороте их на один и тот же угол α отношение плеч ВС и СА не изменится, и равнодействующая также пройдет через точку С.

Если дана система параллельных сил, то равнодействующую этой системы можно найти, последовательно попарно складывая все силы. На линии действия равнодействующей системы параллельных сил также будет существовать точка, обладающая свойствами центра параллельных сил, т. е. если все силы системы вращать вокруг этой точки, равнодействующая этих сил все равно останется приложенной к этой точке.

Выведем формулы для определения координат центра системы n параллельных сил.

Пусть даны пространственная система n параллельных сил и равнодействующая этой системы. Выберем систему осей координат и обозначим координаты точки приложения сил данной системы и координаты точки приложения равнодействующей (см. рисунок 2).

Запишем моменты сил данной системы относительно оси y. Для того, чтобы легче представить, чему равен момент силы относительно оси, следует мысленно перенести силу вдоль линии ее действия до положения, когда точка приложения силы окажется в плоскости координатных осей (см. рисунок 2, сила F1’):

Мy(F1) = F1x1,
My(F2) = F2x2, ……………. …………….

My(Fn) = Fnxn

,
My(FΣ) = FΣxC.

Применим теорему о моменте равнодействующей относительно оси. Тогда:

FΣxC = F1x1 + F2x2 + …. + Fnxn,    откуда

xC = (F1x1 + F2x2 + …. +Fnxn)/FΣ.

Записав моменты сил относительно оси x и вновь применив теорему о моменте равнодействующей, получим:

yC = (F1y1 + F2y2 + …. +Fnyn)/FΣ.

Для определения координаты zC повернем все силы системы вокруг их точек приложения в одну сторону так, чтобы силы стали параллельны оси y. При этом точка С не изменит своего положения, так как она является центром параллельных сил данной системы.

Запишем моменты всех сил относительно оси x и применим теорему о моменте равнодействующей, в результате получим:

zC = (F1z1 + F2z2 +….+Fnzn)/FΣ.

Равнодействующая системы параллельных сил равна их алгебраической сумме, т. е. FΣ = ΣFi.
Применив сокращенную формулу записи, получим формулы для определения координат центра параллельных сил в следующем виде:

xC = Σ(Fixi)/ΣFi;    yC = Σ(Fiyi)/ΣFi;    zC = Σ(Fizi)/ΣFi.

Заметим, что в полученных формулах силы и моменты сил берут со знаком согласно ранее установленным правилам (если вектор силы направлен по направлению координатной оси, сила считается положительной, и наоборот, а момент силы считается положительным, если его вращающее действие относительно точки направлено против часовой стрелки).

***



Уникальность центра системы параллельных сил заключается в том, что равнодействующая сил системы, приложенная в этом центре, не создает относительно него вращающего момента, поскольку плечо равнодействующей равно нулю. Полученные выше формулы для определения координат центра системы параллельных сил на практике чаще всего используют для нахождения центра тяжести различных тел и фигур.

Сила, с которой тело притягивается к Земле, называется силой тяжести. Элементарной частицей тела называется такая малая частица, положение которой в пространстве определяется координатами одной точки.

Рассмотрим тело, состоящее из большого количества элементарных частиц.

В реальности силы тяжести каждой частицы тела, направленные к центру Земли, образуют систему сходящихся сил (поскольку все они направлены к одной точке — центре масс нашей планеты, где и пересекаются), но для тел, размеры которых ничтожно малы по сравнению с размерами нашей планеты, с достаточной степенью точности можно считать эти силы системой параллельных сил.

Центром тяжести тела называется центр параллельных сил тяжести всех элементарных частиц этого тела.

Очевидно, что силы тяжести частиц тела образуют относительно центра тяжести систему параллельных сил, равнодействующая которой не имеет вращающего действия.

Это свойство равнодействующей, проходящей через центр тяжести тела, используют, например, для балансировки колес, валов, при расчетах конструкций на устойчивость и т. п.

Центр тяжести является геометрической точкой, которая может лежать вне тела (например, кольцо, изогнутое тело и т. п.). Центр тяжести будем обозначать точкой С.

Координаты центра тяжести тела находят по тем же формулам, что и координаты центра параллельных сил:

xC = Σ(Gixi)/ΣFi;     yC = Σ(Giyi)/ΣFi;     zC = Σ(Gizi)/ΣGi,

где Gi — сила тяжести каждой элементарной частицы тела;
xi, yi, zi – координаты частицы;
ΣGi – сила тяжести всего тела.

В случае однородных тел по таким же формулам можно определять координаты центра тяжести объемов, площадей и линий, представив Gi, как произведение удельной массы (удельной силы тяжести) тела на его объем:

Gi = γVi,    где γ – удельная сила тяжести (для однородного тела γ – величина постоянная). Если подставить эти зависимости в выведенные ранее формулы, и сократить на постоянный множитель γ, получим координаты центра тяжести для объема однородного тела:

xC = Σ(Vixi)/ΣVi;     yC = Σ(Viyi)/ΣVi;     zC = Σ(Vizi)/ΣVi.

При помощи аналогичных преобразований можно вывести формулы для нахождения координат центра тяжести плоской фигуры (пластины), имеющей одинаковую толщину h по всей площади:
если Gi = γhAi, (здесь Аi – площадь элементарной площадки пластины), то

xC = Σ(Aixi)/ΣAi;     yC = Σ(Aiyi)/ΣAi;     zC = Σ(Aizi)/ΣAi.

Если тело, например, представляет собой однородную проволоку, постоянного поперечного сечения А (т. е. линию), то сила тяжести элементарной частицы, выраженная через длину li (после аналогичных математических преобразований) равна:

xC = Σ(lixi)/Σli;     yC = Σ(liyi)/Σli;     zC = Σ(lizi)/Σli.

Следует иметь в виду, что в механике различают два близких по смыслу понятия — центр тяжести и центр масс.
Центром масс (центром инерции, барицентром) в механике называют геометрическую точку, характеризующую движение тела или системы тел как единого целого. Т. е.

центром масс при расчетах можно заменить систему или габаритное тело, представив их в виде точки, что во многих случаях позволяет упростить вычисления и расчеты.

В отличие от центра тяжести центр масс имеет смысл для любого материального тела или механической системы, в то время как понятие центра тяжести применимо только для твердого тела, находящегося в однородном гравитационном поле. Тем не менее, в лексиконе специалистов эти два понятия нередко имеют одинаковое смысловое значение.

***

Методы нахождения центра тяжести



Олимпиады и тесты

Источник: http://k-a-t.ru/tex_mex/11-statika_center_tj/index.shtml

Refy-free
Добавить комментарий