«Теорема Пифагора»

Малоизвестное обобщение теоремы Пифагора

«Теорема Пифагора»

Теорема Пифагора — пожалуй, самая известная из математических теорем.

Сколько существует оригинальных доказательств! Сколько применений она находит в технике! Сколькими благами цивилизации мы обязаны этой великой теореме! Однако, совсем недавно, я открыл для себя совершенно новую, ранее неизвестную грань этой теоремы, которая значительно расширяет область ее применения.

Именно этим открытием я и хочу поделиться с вами, уважаемые читатели Geektimes. Пожалуйста, не судите строго, если описанные с статье факты, вам известны. Это скроее развлекательная история с научно-популярным элементом, чем строгая математика.

Геометрическое доказательство теоремы Пифагора

История теоремы Пифагора уходит в века и тысячелетия. В этой статье, мы не будем подробно останавливаться на исторических темах.

Для интриги, скажем только, что, по-видимому, эту теорему знали еще древне-египетские жрецы, жившие более 2000 лет до нашей эры. Для тех, кому любопытно, вот ссылка на статью в Википедии.

Прежде всего, хочется для полноты изложения привести здесь доказательство теоремы Пифагора, которое, по моему мнению, наиболее элегантно и очевидно. На рисунке выше изображено два одинаковых квадрата: левый и правый. Из рисунка видно, что слева и справа площади закрашенных фигур равны, так как в каждом из больших квадратов закрашено по 4 одинаковых прямоугольных треугольника. А это означает, что и незакрашенные (белые) площади слева и справа тоже равны. Замечаем, что в первом случае площадь незакрашенной фигуры равна , а во втором — площадь незакрашенной области равна . Таким образом, . Теорема доказана!

Зарождение идеи

В этой статье я хочу не только рассказать что-то новое и познавательное о теореме Пифагора, но и поделиться своей историей о том, как в моей голове зародилась интересная идея, которую я сумел сформулировать, доказать и даже предположил возможность обобщения на более высокую размерность. Но обо всем по порядку.

Египетские треугольники

С давних времен науке известны так называемые египетские треугольники. Это такие прямоугольные треугольники, у которых катеты и гипотенуза выражаются целыми числами.

Можно сказать и иначе: египетские треугольники — это такие тройки натуральных чисел , которые образуют прямоугольный треугольник. Мы все, наверняка, хоть раз встречались с ними в школе на уроках геометрии.

Для примера привожу несколько таких троек:
Во-первых, это красивые математические объекты. А во-вторых, с ними очень удобно решать задачи! Нет никаких квадратных корней и иррациональных чисел в ответе.

Загадочные четверки

И вот, году этак в 2004 — 2005, в пору подготовки к ЕГЭ, когда я сутками напролет решал просто какую-то бесконечную прорву хитро-вычурных задач из части С, мне то и дело стали попадаться не тройки, а уже четверки чисел, которые обладали похожими свойствами: а именно, сумма квадратов трех из них давала полный квадрат четвертого.

Этот факт заинтриговал меня настолько, что я до сих пор наизусть помню некоторые из них. На самом деле, таких четверок бесконечно много и только в пределах чисел до 1000 их существует около 84 000. А вот, к примеру, пять таких четверок, из тех, что компьютер нашел перебором, пока я писал эту статью:
Заметив такое удивительное совпадение, я стал думать.

Вопрос, который меня занимал в связи с этим загадочным обстоятельством, наличием не только троек, но и четверок, обнаруживающих свойства египетского треугольника, был таков: «А что бы это все могло значить?» Я перебирал варианты, какие только приходили в голову. В фантазии себя никак не ограничивал.

Много раз садился за стол, выписывал известные мне наборы четверок и вдумчиво на них смотрел… часами… без перерыва… и… ничего не происходило. У меня был школьный товарищ Саня, с которым я как-то поделился своими идеями. Но его больше интересовали гуманитарные науки. Он стал юристом и сейчас служит в звании майора милиции.

Саня сказал мне примерно следующее:«Вот странный ты человек. Делать тебе больше нечего. Мало тебе задают домашек? Хватит думать о всякой ерунде!». А, надо сказать, думал я, не переставая, и думал много лет, время от времени возвращаясь к этой загадке.

Еще будучи школьником, я сделал вывод, что это, вероятнее всего, имеет отношение к великой теореме Ферма (на которую я тоже много раз подолгу смотрел). Шли годы. Ничего не получалось. Озарение не приходило. И я понял, что, вероятно, дальше чем «что-то связанное с теоремой Ферма» я никуда уже не продвинусь. Но не тут то было

Шерлок нашел зацепку

Итак, в 2014 году ехал я в автобусе по Новосибирску. А может быть это было метро. Дорога не близкая. Заняться нечем. И в очередной раз решил я подумать о моей школьной загадке. И вот что я подумал.

Как же назвать эти числа? Треугольниками не назовешь, ведь четыре числа никак не могут образовать треугольник.

И тут! Как гром среди ясного неба

Раз есть такие четверки чисел, значит должен быть геометрический объект с такими же свойствами, отраженными в этих числах!

Теперь осталось только подобрать какой-то геометрический объект под это свойство, и все встанет на свои места! Конечно, предположение было чисто гипотетическое, и никакого подтверждения под собой не имело. Но что если это так! Начался перебор объектов. Звезды, многоугольники, правильные, неправильные, с прямым углом и так далее и тому подобное. Опять ничего не подходит. Что делать? И в этот момент Шерлок получает свою вторую зацепку.

Надо повысить размерность! Раз тройке соответствуют треугольник на плоскости, значит четверке соответствует нечто трехмерное!

О нет! Опять перебор вариантов! А в трехмерии гораздо, гораздо больше всевозможных геометрических тел. Попробуй перебрать их все! Но не все так плохо.

Есть же еще прямой угол и другие зацепки! Что мы имеем? Египетские четверки чисел (пусть будут египетские, надо же их как-то называть), прямой угол (или углы) и некий трехмерный объект.

Дедукция сработала! И… Полагаю, что догадливые читатели уже поняли, что речь идет о пирамидах, у которых при одной из вершин все три угла — прямые. Можно даже назвать их прямоугольными пирамидами по аналогии с прямоугольным треугольником.

Новая теорема

Итак, у нас есть все что нужно. Прямоугольные (!) пирамиды, боковые грани-катеты и секущая грань-гипотенуза. Пришло время нарисовать еще одну картинку.

Теорема Пифагора для прямоугольной пирамиды На картинке изображена пирамида с вершиной в начале прямоугольных координат (пирамида как бы лежит на боку).

Пирамида образована тремя взаимно-перпендикулярными векторами, отложенными из начала координат вдоль координатных осей. То есть каждая боковая грань пирамиды — это прямоугольный треугольник с прямым углом при начале координат. Концы векторов определяют секущую плоскость и образуют грань-основание пирамиды.

Пусть есть прямоугольная пирамида, образованная тремя взаимно-перпендикулярными векторами , у которой площади граней-катетов равны — , и площадь грани-гипотенузы — .

Тогда

Альтернативная формулировка: У четырехгранной пирамиды, у которой при одной из вершин все плоские углы прямые, сумма квадратов площадей боковых граней равна квадрату площади основания.

Разумеется, если обычная теорема Пифагора формулируется для длин сторон треугольников, то наша теорема формулируется для площадей сторон пирамиды. Доказать эту теорему в трех измерениях очень просто, если вы немного знаете векторную алгебру.
Выразим площади через длины векторов .

где .

Площадь представим как половину площади параллелограмма, построенного на векторах и

Как известно, векторное произведение двух векторов — это вектор, длина которого численно равна площади параллелограмма, построенного на этих векторах. Поэтому Таким образом,
Что и требовалось доказать!

ЭВРИКА!

Моему восторгу не было границ! Я буквально прыгал от счастья. Конечно, это не бог весть какая сложная теорема, и доказательство очень простое, но ведь сам. И до меня — никто! Я был в этом искренне убежден в течение около года. Попытки найти хоть какие-то свидетельства о том, что это уже известно и доказано терпели неудачу одна за другой, и я думал, что совершил открытие.

Это непредаваемое чувство! Я хотел поделиться этой теоремой со всем миром. Говорил о ней друзьям, знакомым математикам, просто знакомым с техническим/математическим образованием и без. Никто не разделял моего восторга и энтузиазма. Всем было попросту безразлично. Будто бы я не придумал и доказал теорему, а просто в магазин за хлебом сходил.

Ну и что тут такого? Вот уж действительно… Как говорится, «Как скучно мы живём! В нас пропал дух авантюризма, мы перестали лазить в окна к любимым женщинам, мы перестали делать большие хорошие глупости.» (из фильма «Ирония судьбы»). Конечно, как у человека, профессионально занимающегося исследованиями, подобное в моей жизни уже случалось, и не раз.

Но этот момент был самым ярким и самым запоминающимся. Я испытал полную гамму чувств, эмоций, переживаний первооткрывателя. От зарождения мысли, кристализации идеи, нахождения доказательства — до полного непонимания и даже неприятия, которое встретили мои идеи у моих друзей, знакомых и, как мне тогда казалось, у целого мира.

Это было уникально! Я словно почувствовал себя в шкуре Галлилея, Коперника, Ньютона, Шредингера, Бора, Эйнштейна и многих многих других открывателей.

Послесловие

В жизни, все оказалось гораздо проще и прозаичнее.

Я опоздал… Но на сколько! Всего-то навсего 18 лет! Под страшными продолжительными пытками и не с первого раза Гугл признался мне, что эта теорема была опубликована в 1996 году! Вот ссылка на статью:

Amir-Moéz, Ali R., Robert E. Byerly, and Robert R. Byerly. «Pythagorean theorem in unitary spaces.» Publikacije Elektrotehničkog fakulteta. Serija Matematika (1996): 85-89.

издательством Техасского технического университета. Авторы, профессиональные математики, ввели терминологию (которая, кстати, во многом совпала с моей) и доказали также и обобщенную теорему справедливую для пространства любой размерности большей единицы. Что же произойдет в размерностях более высоких, чем 3? Все очень просто: вместо граней и площадей будут гиперповерхности и многомерные объемы. А утверждение, конечно, останется все тем же: сумма квадратов объемов боковых граней равна квадрату объема основания, — просто количество граней будет больше, а объем каждой из них станет равен половине произведения векторов-образующих. Вообразить это почти невозможно! Можно только, как говорят философы, помыслить! Что удивительно, узнав о том, что такая теорема уже известна, я ничуть не расстроился. Где-то в глубине души я подозревал, что вполне возможно, я был не первый, и понимал, что нужно быть всегда к этому готовым. Но тот эмоциониальный опыт, который я получил, зажег во мне искру исследователя, которая, я уверен, теперь уже не угаснет никогда!

Теорема Пифагора

«Теорема Пифагора»

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника.

Будет полезно сохранить таблицу Пифагора.

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b:

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

измерив только длины сторон прямоугольного треугольника.

Обратная теорема Пифагора

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

треугольник прямоугольный.

Или, иными словами:

Для всякой тройки положительных чисел a, b и c, такой, что

,

существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Доказательства теоремы Пифагора

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей, аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений).

     1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим

её основание через H.

Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC.

Введя обозначения:

получаем:

 ,

что соответствует —                 

Сложив a2 и b2, получаем:                         

или    ,     что и требовалось доказать.

     2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

справа.

Четырёхугольник со сторонами c – квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и

площади внутреннего квадрата.

Что и требовалось доказать.

     3. Доказательство теоремы Пифагора методом бесконечно малых.

Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a, мы можем

записать следующее соотношение для бесконечно 

малых  приращений сторон с и a (используя подобие

треугольников):

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

(в данном случае катет b). Тогда для константы интегрирования получим:

Источник: https://www.calc.ru/1429.html

Формулировка и доказательство теоремы Пифагора. урок. Геометрия 8 Класс

«Теорема Пифагора»

Мы знаем, что если у двух треугольников равны две стороны и углы между ними тоже равны, то такие треугольники обязательно равны. Это один из признаков равенства треугольников.

Если один из углов треугольника прямой и во втором треугольнике тоже один из углов прямой, то эти углы равны друг другу.

И если стороны, заключающие прямые углы (а стороны, которые заключают прямые углы, называются катетами), равны, то равны и сами прямоугольные треугольники.

Но это, в свою очередь, означает, что если мы знаем два катета прямоугольного треугольника, то гипотенуза определена одним единственным образом, который мы и рассмотрим.

Еще в Древнем Египте было известно, что если взять прямоугольный треугольник, катеты которого равны 3 и 4 единицы, то гипотенуза обязательно будет равна 5 единицам.

Рис. 1. Египетский треугольник

В Древнем Египте часто пользовались таким треугольником. Он называется египетским треугольником (рис. 1). Это самый маленький из прямоугольных треугольников с целыми сторонами. Вы можете сложить прямоугольные треугольники с помощью спичек и увидеть, что если хотя бы какой-нибудь из катетов будет меньшим числом, то гипотенуза обязательно не будет целым числом.

Мы готовы сформулировать теорему Пифагора и записать формулу, которая позволит вычислить гипотенузу прямоугольного треугольника, если известны катеты этого прямоугольного треугольника:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Рис. 2. Прямоугольный треугольник

 – эта формула и называется теоремой Пифагора (рис. 2).

Теорема Пифагора формула

—  в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Докажем теорему Пифагора.

Задача № 1. Дано: прямоугольный треугольник АВС, в котором угол С – прямой (90 °). Катет ВС = a, катет АС = b, гипотенуза АВ = с (рис. 3).

Доказать:

Рис. 3. Иллюстрация к теореме Пифагора

Решение.

В формуле, которую нам необходимо доказать, фигурируют квадраты трех величин: квадраты с, а и b. В геометрии мы сталкиваемся с квадратами длин отрезков, когда считаем площади фигур. Но и, наверное, самая простая фигура, площадь которого можем посчитать – квадрат. Соответсвенно, первая мысль – достроить эту картинку до квадратов. Достроим треугольник АВС до квадрата со стороной а+b.

Для этого продолжим катет АС на длину катета ВС (+ а), а ВС на длину катета АС (+ b) (рис. 4).

Рис. 4. Иллюстрация к теореме

Достроим получившуюся картинку до прямоугольника (рис. 5).

Рис. 5. Иллюстрация к теореме

У этого прямоугольника смежные стоороны равны (а+b). Значит, этот прямоугольник обязательно является квадратом. Обозначим получившиеся точки буквами. Получим квадрат СDEF.

Все стороны этого квадарта равны (а + b). Соответственно, стороны DE и EF тоже можем разделить на отрезки а и b. Обозначим эти точки буквами G и H. Соединим точку А с точкой G, точку G с точкой Н, точку Н с точкой В (рис. 6).

Рис. 6. Иллюстрация к теореме

Квадрат СDEF оказался разрезанным на 5 фигур: 4 треугольника по углам и 1 четырехугольник в центре. Если этот четырехугольник окажется квадратом, то это будет удобно для нас. Но это сначала нужно доказать.

Выясним, что мы знаем про получившуюся фигуру. Все 4 треугольника обязательно являются прямоугольными,потому что каждый из них содержит один из углов квадрата (Ð С = Ð D = Ð Е = Ð F = 90°). Катеты в этих треугольниках равны а и b.

Значит, все эти треугольники равны друг другу (по двум сторонам и углу между ними). А если все эти треугольники равны друг другу, то равны все их соответсвенные элементы. Например, все гипотенузы у них обязательно равны с (рис. 7).

Рис. 7. Иллюстрация к теореме

Значит, четырехугольник АGНВ – ромб. Четырехугольник, у которого все стороны равны, называется ромб. Мы доказали, что все стороны равны, АG = GН = НВ = ВА = с. АGНВ – ромб.

Гипотенуза не единственное, что равно у наших треугольников. Еще у них равны все острые углы. Отметим это на картинке. Во-первых, равны Ð САВ = Ð DGA = Ð EHG = Ð H. Зеленым цветом обозначим эти углы, величиной α. И такие углы тоже равны: Ð СВА = Ð DAG = Ð EGH = Ð FHB. Красным цветом обозначим углы величиной b (рис. 8).

Рис. 8. Иллюстрация к теореме

На нашей картинке отмечено очень много углов, но не все. Остался, например, не отмеченным Ð GАВ. Вычислим его.

Эти три угла вместе, Ð DAG, ÐGAB, Ð CAB, составляют развернутый угол. Соответственно:

Ð GАВ = 180° — Ð CAB — Ð DAG = 180 ° — α — b.

Преобразуем эту формулу следующим образом:

Ð GАВ = 180° — (α + b).

У нас получилась сумма (α + b). Что такое сумма (α + b)? Это сумма острых углов прямоугольного треугольника. В прямоугольном треугольнике сумма острых углов равна 90°. Поэтому получается:

Ð GАВ = 180° — (α + b) = 180° — 90° = 90°. То есть Ð GАВ – прямой. А значит наш ромб АGНВ является квадратом. Если в ромбе один из углов прямой, то этот ромб обязательно квадрат.

Мы получили: большой квадрат СDEF, квадрат меньше АGНВ. Можно начинать записывать площади.

С одной стороны, СDEF – квадрат и его площадь можно посчитать как квадрат стороны:

С другой стороны, этот квадрат состоит из 5 фигур: 4 треугольников и квадрата в центре. Площадь квадрата в центре равна с2, а четыре треугольника равны друг другу и площадь каждого из них – половина произведения катетов.

Площадь четырехугольника СDEF не зависит от того, каким образом мы с вами ее считаем. Она всегда одна и та же. Соответственно, мы можем приравнять наши равенства, но сначала их надо преобразовать.

В первом равенстве раскрываем квадрат суммы:

Во втором случае:

Первое выражение равно второму.

И там, и там есть 2аb. От них легко отказаться – сократим их. И получим:

То есть в нашем прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Что и требовалось доказать.

Это доказательство – не единственное доказательство теоремы Пифагора. У нее очень много доказательств. Теорема Пифагора занесена даже в Книгу рекордов Гиннеса за счет того, что у нее так много доказательств. Интересным является тот факт, что многие из них почти не требуют алгебры. Вот, например, в Древней Индии использовали такой способ доказательства.

Рисовали 2 одинаковых квадрата. Один такой, как у нас уже был нарисован (№1). И второй тоже со стороной (а + b). Такой же квадрат, но разрезали его немного по-другому (№2) (рис. 9).

Рис. 9. Иллюстрация к теореме

Сначала его разрезали на 4 фигуры: 2 квадрата. Один со стороной а, второй со стороной b. Соответственно, по углам оставались прямоугольники со сторонами а и b. А дальше каждый из этих прямоугольников со сторонами а и b разрезали пополам на 2 треугольника.

Теперь получается 2 одинаковых квадрата, по-разному разрезанных. И в этих одинаковых квадратах есть одинаковые фигуры. Даже в одном и том же положении. Их равенство выделено одинаковыми цветами на рисунках (рис. 10).

Рис. 10. Иллюстрация к теореме

Если у каждой картинке вырезать эти треугольники, то на одной картинке остается квадрат со стороной с и площадью с2; а на другой картинке остается 2 квадрата со сторонами а и b, сумма площадей этих квадратов – это а2 + b2.

Такое доказательство использовали в Древней Индии.

Также есть другое доказательство, благодаря которому стало известно про «пифагоровы штаны, которые во все стороны равны». Посмотрите на картинку (рис. 11).

Рис. 11. Иллюстрация к теореме

На катетах прямоугольного треугольника построены квадраты. На гипотенузе тоже построен квадрат. Его вырезали, и осталось пустое место (для удобства окрашен в зеленый цвет).

Квадраты, которые образованы на катетах, разрезаны на 5 кусочков. Попробуем сложить из этих кусочков квадрат на гипотенузе. (Из двух маленьких квадратов построили большой на гипотенузе.

Каждый кусочек со своей окраской показывает расположение в большом квадрате.)

Рис. 12. Иллюстрация к теореме

Мы видим, что квадрат, построенный на гипотенузе, собран из кусочков квадратов, построенных на катетах (рис. 12). То есть площадь этого квадрата с2 равна сумме площадей этих квадратов а2 + b2.

Список литературы по теме «Теорема Пифагора» (формула, доказательство)

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия, 7–9.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание на решение задач по формулам по теореме Пифагора

  1. Найти гипотенузу c, если а, b – катеты. а = 5 см, b = 6 см.
  2. Найти в дополнительной литературе различные доказательства теоремы Пифагора (2–3).

Источник: https://interneturok.ru/lesson/geometry/8-klass/ploschad/formulirovka-i-dokazatelstvo-teoremy-pifagora?konspekt

История теоремы

Однако название получено в честь учёного только по той причине, что он первый и, даже единственный человек, который смог доказать теорему.

Немецкий историк математики Кантор утверждал, что о теореме было известно ещё египтянами приблизительно в 2300 году до н. э. Он считал, раньше строили прямые углы благодаря прямоугольным треугольникам со сторонами 3, 4 и 5.

Известный учёный Кеплер говорил, что у геометрии есть незаменимое сокровище – это теорема Пифагора, благодаря которой можно вывести большинство теорем в геометрии.

Раньше теорему Пифагора называли “теоремой невесты” или “теоремой нимфы”. А всё дело в том, что её чертёж был очень похож на бабочку или нимфу. Арабы же, когда переводили текст теоремы, решили, что нимфа означает невеста. Так и появилось интересное название у теоремы.

Теорема Пифагора, формула

Теорема

Теорема Пифагора – в прямоугольном треугольнике сумма квадратов катетов () равна квадрату гипотенузы (). Это одна из основополагающих теорем эвклидовой геометрии.

Формула: 

Как уже говорилось, есть много разнообразных доказательств теоремы с разносторонними математическими подходами. Однако, более часто используют теоремы, связанные с площадями.

Построим на треугольнике квадраты (синий, зеленый, красный)

То есть сумма площадей квадратов, построенных на катетах равняется площади квадрата, построенном на гипотенузе. Соответственно, площади этих квадратов равны – . Это и есть геометрическое объяснение Пифагора.

Доказательство теоремы методом площадей: 1 способ

Докажем, что .

Рассмотрим всё тот же треугольник с катетами a, b и гипотенузой c.

  1. Достраиваем прямоугольный треугольник до квадрата. От катета “а” продолжаем линию вверх на расстояние катета “b” (красная линия).
  2. Далее ведём линию нового катета “а” вправо (зелёная линия).
  3. Два катета соединяем гипотенузой “с”.

Получается такой же треугольник, только перевёрнутый.

Аналогично строим и с другой стороны: от катета “а” проводим линию катета “b” и вниз “а” и “b” А снизу от катета “b” проводим линию катета “а”. В центре от каждого катета провели гипотенузы “с”. Таким образом гипотенузы образовали квадрат в центре.

Этот квадрат состоит из 4-х одинаковых треугольников. А площадь каждого прямоугольного треугольника = половина произведения его катетов. Соответственно, . А площадь квадрата в центре = , так как все 4 гипотенузы со стороной .  Стороны четырёхугольника равны, а углы прямые. Как нам доказать, что углы прямые? Очень просто. Возьмём всё тот же квадрат:

Мы знаем, что эти два угла, показаны на рисунке, являются 90 градусам. Так как треугольники равны, значит следующий угол катета “b” равен предыдущему катету “b”:

Сумма этих двух углов = 90 градусов. Соответственно, предыдущий угол тоже 90 градусов. Конечно же, аналогично и с другой стороны. Соответственно, у нас действительно квадрат с прямыми углами.

Так как  острые углы прямоугольного треугольника в общей сложности равняются 90 градусам, то угол четырёхугольника так же будет равен 90 градусов, ведь 3 угла в сумме = 180 градусов.

Соответственно, площадь квадрата складывается из четырёх площадей одинаковых прямоугольных треугольников и площади квадрата, который образован гипотенузами.

Таким образом, получили квадрат со стороной . Мы знаем, что площадь квадрата со стороной – это будет квадрат его стороны. То есть . Этот квадрат состоит из четырёх одинаковых треугольников.

  1. Запишем: .
  2. Далее смотрим, что площадь прямоугольного треугольника – это половина произведения его катетов. Поэтому дальше записываем:т
  3. Также надо прибавить площадь квадрата, который находится в центре между треугольниками со стороной “с”. И теперь получим: 
  1. Раскрываем скобки и получаем: 
  2. Сокращаем . Получается:

И это значит, что мы доказали теорему Пифагора.

ВАЖНО!!! Если находим гипотенузу, тогда складываем два катета, а затем ответ выводим из корня. При нахождении одного из катетов: из квадрата длины второго катета вычитаем квадрат длины гипотенузы и находим квадратный корень.

Примеры решения задач

Пример 1

Задача

Дано: прямоугольный треугольник с катетами 4 и 5.

Найдите гипотенузу. Пока её обозначим “с”

Решение

Сумма квадратов катетов равняется квадрату гипотенузы. В нашем случае – .

Воспользуемся теоремой Пифагора:

Итак, , а . Катеты в сумме получают 41.

Тогда . То есть квадрат гипотенузы равен 41.

Квадрат числа 41 = 6,4.

Мы нашли гипотенузу.

Ответ

Гипотенуза = 6,4

Пример 2

Задача

Дано: прямоугольный треугольник, где гипотенуза = 12, один катет = 10

Найдите второй катет.

Решение

Обозначим неизвестный катет – b.

Воспользуемся теоремой Пифагора:

, а

Запишем:

Находим

Если , тогда просто

Ответ

Второй катет (b) равен 6,6.

Заключение

Итак, мы рассмотрели теорему Пифагора, смогли привести ее доказательство и привели несколько примеров задач и их решений.

Запомните раз и навсегда: квадраты гипотенузы равен суммы квадратов катетов: (это вся теорема Пифагора).

Источник: https://NauchnieStati.ru/spravka/teorema-pifagora/

Refy-free
Добавить комментарий