Шар и сфера

Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Шар и сфера

Определение.

Сфера (поверхность шара) — это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар — это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) — это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) — это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара: Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4πR2 = πD2

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат:

x2 + y2 + z2 = R2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x0, y0, z0) в декартовой системе координат:

(x — x0)2 + (y — y0)2 + (z — z0)2 = R2

3. Параметрическое уравнение сферы с центром в точке (x0, y0, z0):
x = x0 + R · sin θ · cos φ y = y0 + R · sin θ · sin φ z = z0 + R · cos θ
где θ ϵ [0,π], φ ϵ [0,2π].

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются, а в плоскости пересечения образуется круг.

Определение. Секущая сферы — это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) — это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость — это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость — это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг. Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность, а на шаре местом сечения будет малый круг. Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R2 — m2,

где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) — это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Определение.Касательная к сфере — это прямая, которая касается сферы только в одной точке.

Определение.Касательная плоскость к сфере — это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента. Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2πRh

Формула. Объём сегмента сферы с высотой h через радиус сферы R: Определение. Срез шара — это часть шара, которая образуется в результате его сечения двумя параллельными плоскостями и находится между ними. Определение. Сектором называется часть шара, ограниченная совокупностью всех лучей, исходящих из центра шара О и образующих круг на его поверхности с радиусом r. Формула. Площадь поверхности сектора S с высотой O1H (h) через радиус шара OH (R):

S = πR(2h + √2hR — h2)

Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):

Определение. Касательными сферами (шарами) называются любые две сферы (шара), которые имеют одну общую точку соприкосновения. Если расстояние между центрами больше суммы радиусов, то фигуры не касаются и не пересекаются.

Определение. Концентрическими сферами называются любые две сферы, которые имеют общий центр и радиусы различной длины.

Источник: https://ru.onlinemschool.com/math/formula/sphere/

Урок 8. сфера и шар — Геометрия — 11 класс — Российская электронная школа

Шар и сфера

Геометрия, 11 класс

Урок №8. Сфера и шар

Перечень вопросов, рассматриваемых в теме:

  • что такое сфера, какие у неё есть элементы (центр, радиус, диаметр сферы);
  • что такое шар и его элементы;
  • уравнение сферы;
  • формула для нахождения площади поверхности сферы;
  • взаимное расположение сферы и плоскости;
  • теорема о радиусе сферы, который проведён в точку касания и теорему обратную данной.

Глоссарий по теме:

Определение

Окружность – множество точек плоскости, равноудалённых от данной точки. Данная точка называется центром окружности, расстояние от центра до любой точки окружности называется радиусом окружности.

Определение

Круг – это часть плоскости, ограниченная окружностью.

Определение

Сфера – это поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки, которую называют центром.

Определение

Тело, ограниченное сферой, называется шаром.

Шар можно описать и иначе. Шаром радиуса R с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек.

Уравнение сферы

– уравнение сферы радиуса R и центром С(x0; y0; z0).

Определение

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка – точкой касания.

Определение

Сегмент шара — это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Определение

Сектором называется часть шара, ограниченная совокупностью всех лучей, исходящих из центра шара О и образующих круг на его поверхности с радиусом r.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций : базовый и углубл. уровни – М. : Просвещение, 2014. – 255, сс. 136-142.

Дополнительная литература:

Шарыгин И.Ф., Геометрия. 10–11 кл. : учеб. для общеобразоват. учреждений– М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 77-84.

Открытые электронные ресурсы:

Образовательный портал “Решу ЕГЭ”. https://mathb-ege.sdamgia.ru/test?theme=177

Теоретический материал для самостоятельного изучения

1. Основные теоретические факты

По аналогии с окружностью сферу рассматривают как множество всех точек равноудалённых от заданной точки, но только всех точек не плоскости, а пространства.

Рисунок 1 – Сфера с центром в точке О и радиусом R

Данная точка О называется центром сферы, а заданное расстояние – радиусом сферы (обозначается R). Любой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через центр, называется диаметром (обозначается D). D=2R.

Определение

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки, которую называют центром.

Определение

Тело, ограниченное сферой, называется шаром.

Шар можно описать и иначе. Шаром радиуса R с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек.

Сферу можно получить ещё одним способом — вращением полуокружности вокруг её диаметра, а шар – вращением полукруга вокруг его диаметра.

2. Уравнение сферы

Прежде чем вывести уравнение сферы введем понятие уравнения поверхности в пространстве. Для этого рассмотрим прямоугольную систему координат Oxyz и некоторую поверхность F. Уравнение с тремя переменными x, y, z называется уравнением поверхности F, если этому уравнению удовлетворяют координаты любой точки поверхности F и не удовлетворяют координаты никакой другой точки.

Пусть сфера имеет центром точку С (x0; y0; z0) и радиус R. Расстояние от любой точки М (x; y; z) до точки С вычисляется по формуле:

МС=

Исходя из понятия уравнения поверхности, следует, что если точка М лежит на данной сфере, то МС=R, или МС2=R2, то есть координаты точки М удовлетворяют уравнению:

.

Это выражение называют уравнением сферырадиуса R и центром С(x0; y0; z0).

3. Взаимное расположение сферы и плоскости

Взаимное расположение сферы и плоскости зависит от соотношения между радиусом сферы R и расстояния от центра сферы до плоскости d.

1. Пусть dR. Если расстояние от центра сферы до плоскости меньше радиуса сферы, тогда сфера и плоскость пересекаются, и сечение сферы плоскостью есть окружность.

2. Пусть d=R. Если расстояние от центра сферы до плоскости равно радиусу сферы тогда сфера и плоскость имеют только одну общую точку, и в этом случае говорят, что плоскость касается сферы.

3. Пусть dR. Если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.

Рассмотрим случай касания более подробно.

Определение

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка – точкой касания.

Теорема (свойство касательной плоскости).

Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Теорема (признак касательной плоскости):

Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащей на сфере, то эта плоскость является касательной к сфере.

4. Основные формулы

Соотношение между радиусом сферы, радиусом сечения и расстоянием от центра сферы до плоскости сечения:

Формула для вычисления площади поверхности сферы и ее элементов:

S=4πR2 – площадь сферы.

S = 2πRh – площадь поверхности сегмента сферы радиуса R с высотой h.

– площадь поверхности сектора с высотой h.

Примеры и разбор решения заданий тренировочного модуля

1. Площадь сечения шара, проходящего через его центр, равна 9 кв. м. Найдите площадь поверхности шара.

Решение:

Площадь круга вычисляется по формуле: Sкр=πR2.

Площадь поверхности шара вычисляется по формуле: Sсф=4πR2. Радиус шара и радиуса сечения, проходящего через центр шара, одинаковые. Поэтому площадь поверхности шара в 4 раза больше площади его диаметрального сечения. То есть площадь поверхности шара равна 36.

Ответ: 36

2. Вычислите радиус круга, площадь которого равна площади сферы радиуса 5.

Решение:

Площадь сферы равна Sсф=4πR2. То есть Sсф=100π.

По условию площадь круга некоторого радиуса r также равна 100π. Значит, r2 =100, то есть r=10.

Ответ: 10.

3. Все стороны треугольника АВС касаются сферы радиуса 5. Найти расстояние от центра сферы до плоскости треугольника, если АВ=13, ВС=14, СА=15

Решение:

Окружность, вписанная в треугольник, является сечением сферы.

Найдем ее радиус.

Площадь треугольника с известными сторонами можно вычислить по формуле Герона:

p=0,5(AB+BC+AC)=21

S=84.

С другой стороны, S=p·r.

Отсюда r=4.

Теперь найдем расстояние от центра шара до секущей плоскости.

Используем соотношение:

h=3.

Ответ: 3.

4. Вершины прямоугольника лежат на сфере радиуса 10. Найти расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16.

Решение:

Так как вершины прямоугольника лежат на сфере, то окружность, описанная около прямоугольника, является сечением сферы.

Радиус окружности, описанной около прямоугольника, равен половине его диагонали, то есть r=8.

По условию задачи R=10.

Используем соотношение:

h=6.

Ответ: 6.

Источник: https://resh.edu.ru/subject/lesson/4034/conspect/

Сфера и шар

Шар и сфера

Сфераповерхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки.

Центр сферы — данная точка (точка О на рисунке выше).

Радиус сферы — данное расстояние (R на рисунке выше), также это любой отрезок, соединяющий центр сферы с какой-либо ее точкой.

Диаметр сферы отрезок, соединяющий две точки сферы и проходящий через ее центр. Диаметр сферы в два раза больше ее радиуса, т.е. если радиус сферы — R, то ее диаметр — 2R.

Определение

Шартело, ограниченное сферой.

Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара.

Шар радиуса R с центром О содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая и саму точку О), и не содержит других точек.

Шар также может быть получен вращением полукруга вокруг его диаметра. При этом сфера образуется в результате вращения полуокружности.

Объем шара

Объем шара радиуса R равен .

Доказательство

Дано: шар радиуса R и объемом V.

Доказать: .

Доказательство:

Воспользуемся принципом Кавальери*.

Рассмотрим два тела: половину шара радиуса R и тело Т, представляющее собой цилиндр радиуса R с высотой R, из которого вырезан конус с радиусом основания и высотой R.

Представим себе, что оба тела «стоят» на плоскости (смотри рисунок ниже). Проведем секущую плоскость , параллельную плоскости и пересекающую радиус шара ОА, перпендикулярный к плоскости , в точке А1, а высоту ВН конуса — в точке В1.

Сечение половины шара представляет собой круг, по теореме Пифагора радиус этого круга . Поэтому площадь этого круга .

Сечение тела Т представляет собой кольцо, площадь которого равна разности площадей двух кругов: круга радиуса R и круга радиуса В1В2 (смотри рисунок выше), т.е. равна .

  ВВ1В2 подобен  ВНК по двум углам ( В — общий,  ВВ1В2 ВНК = 900), при этом ВН = НК = R, следовательно, и В1В2 = ВВ1 , кроме того, ВВ1 = ОА1 (т.к. параллельные плоскости отсекают от параллельных прямых равные отрезки), значит, площадь сечения тела Т равна .

Получаем, что площадь сечения половины шара равна площади сечения тела Т. Поэтому и объем половины шара равен объему этого тела. В свою очередь, объем тела Т можно вычислить как разность объемов цилиндра и конуса:

.

Итак, объем половины шара равен , следовательно, объем всего шара . Что и требовалось доказать.

Площадь сферы

Площадь сферы S радиуса R вычисляется по формуле .

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Предмет стереометрии

Параллельность и перпендикулярность прямых и плоскостей в пространстве

Многогранник

Призма

Параллелепипед

Объём тела

Свойства прямоугольного параллелепипеда

Пирамида

Цилиндр

Конус

Многогранники

Правило встречается в следующих упражнениях:

7 класс

Задание 1225, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1226, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1227, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1228, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1229, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1230, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 23, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 24, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 25, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1252, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

© budu5.com, 2020

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/3597

Сфера и шар. урок. Геометрия 11 Класс

Шар и сфера

Сфера – это тело вращения, которое напоминает окружность, только не на плоскости, а в пространстве. Вспомним, что же такое окружность. Окружность – это множество всех точек плоскости, равноудаленных от данной точки, называемой центром (рис. 1).

Рис. 1. Окружность

Рис. 2. Круг

Тогда, сфера – это множество всех точек пространства, равноудаленных от данной точки, называемой центром (рис. 3).

Радиус сферы – расстояние, на которое они (точки) удалены от центра.

Рис. 3. Сфера

Рис. 4. Шар

Продолжая аналогию, шар – это круг (рис. 2) в пространстве: множество всех точек, заключенных внутри сферы (плюс сама сфера).

Шар – это множество всех точек пространства, расстояние от которых до данной точки, называемой центром, не превосходит радиуса (рис. 4).

Бильярдный шар – шар (рис. 5);

Шарик для игры в настольный теннис – сфера (рис. 6);

Рис. 5. Бильярдный шар

Рис. 6. Шарик для игры в настольный теннис

Планета Земля не является шаром с математической точки зрения, так как она приплюснута на полюсах. Земля имеет форму эллипсоида вращения, или геоида.

Замечание: сфера является частью шара.

Рассмотрим полуокружность  с центром  и диаметром  (рис. 7). Вращая ее вокруг диаметра , получим сферу (рис. 8). Т. е. сфера – тело вращения.

Рис. 7. Полуокружность

Рис. 8. Сфера как тело вращения

Аналогично, если вращать не полуокружность, а полукруг, получим шар (рис. 9, 10).

Рис. 9. Полукруг

Рис. 10. Шар как тело вращения

Хорда сферы – это отрезок, соединяющий две точки сферы (рис. 11).

Диаметр сферы – это хорда, которая проходит через центр сферы (рис. 12).

Рис. 11. ,  – хорды

Рис. 12.  – диаметр,  – центр

Рис. 13. Сфера с центром в точке

Выведем уравнение сферы радиуса  с центром в точке  (рис. 13).

Пусть произвольная точка  лежит на сфере. Тогда, по определению сферы, . С другой стороны, расстояние между точками в координатах равно:

.

Приравнивая это к  и возводя в квадрат, приходим к формуле, напоминающей уравнение окружности:

.

Это и есть уравнение сферы.

Соответственно, шар задается не уравнением, а неравенством:

.

Пример

Пусть дано уравнение . Требуется доказать, что данное уравнение задает сферу, и найти координаты ее центра и радиус.

Вспомним общее уравнение сферы:

.

Наша задача – свести исходное уравнение к уравнению сферы. Для этого выделим полные квадраты:

;

Таким образом, это действительно сфера, ее центр – точка с координатами , а ее радиус равен .

Формула для нахождения площади сферы выводится аналогично формуле для нахождения площади окружности. Берутся вписанные и описанные -угольники. Устремляя  к бесконечности, говорим, что периметр многоугольника стремится к длине окружности. И выводим формулу площади.

Аналогично и для сферы. Опишем сферу многогранником и будем увеличивать количество граней до бесконечности. Тогда площадь боковой поверхности многогранника будет стремиться к площади поверхности сферы.

 – площадь сферы

Пример №1

Дана сфера, площадь которой равна 64π. Найти радиус сферы.

Дано:

Так как ,  ,

Поделив обе части уравнение на , получим:

Ответ: радиус сферы равен 4.

Во сколько раз изменится площадь поверхности сферы, если ее радиус увеличили в три раза?

Так как площадь сферы . Если радиус увеличится в 3 раза, тогда . Соответственно, площадь увеличилась в 9 раз:

Замечание: если все измерения фигуры увеличить в  раз, площадь поверхности фигуры вырастет в  раз (рис. 14).

Рис. 14. Иллюстрация к замечанию

Представим себе, что Земля имеет форму шара. Предположим, что ее обтянули канатом по экватору – чтобы канат плотно прилегал к поверхности Земли (рис. 15). Затем канат удлинили на 1 м (рис. 16). Образовался просвет. Может ли в этот просвет пролезть мышка?

Рис. 15. Земля

Рис. 16. Иллюстрация к задаче

Решение

Пусть радиус земного шара – . Тогда длина каната будет После удлинения длина каната стала . Но если считать, что просвет между поверхностью Земли и новым канатом равен  (везде одинаков), то тогда получаем, что этот канат «обхватывает» шар радиуса , а значит, его длина равна .

Имеем, . Или . Так как  меньше 7, то .

Следовательно, в такой зазор, около 14 см, мышка точно сможет пролезть.

Обратим внимание, что полученный зазор не зависит от размеров шара, которым обтянута веревка. То есть, даже если веревкой был обтянут обычный школьный глобус, то после ее удлинения на 1 метр зазор все равно будет около 14 см.

На этом уроке мы познакомились с новыми телами вращения, а именно со сферой и шаром. Дали определения этих геометрических объектов, указали на их отличия, а также назвали все элементы этих тел. Познакомились с формулой площади сферы.

Список литературы

  1. Атанасян Л.С. и др. Геометрия. Учебник для 10-11 классов.
  2. Погорелов А.В. Геометрия. Учебник для 10-11 классов.
  3. Бевз В.Г., Владимирова Н.Г. Геометрия 11 класс.

Домашнее задание

  1. Площадь большого круга шара равна 16. Найдите площадь поверхности шара.
  2. Во сколько раз увеличится объем шара, если его радиус увеличить в шесть раз?
  3. Площадь поверхности шара равна 225. Найдите радиус и площадь большого круга шара.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Источник: https://interneturok.ru/lesson/geometry/11-klass/btela-vraweniya-b/sfera-i-shar?book_id=30

Refy-free
Добавить комментарий