Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

Влияние дефектов на физические свойства кристаллов

Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

Тагиров Т. Влияние дефектов на физические свойства кристаллов // Молодой ученый. — 2016. — №17.1. — С. 117-119. — URL https://moluch.ru/archive/121/33597/ (дата обращения: 10.03.2020).



Кристалл — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

Физические свойства кристаллов

Окраска — некоторые кристаллы имеют настолько чистый и красивый цвет, что их используют как краски или лаки.

часто их названия применяют в обиходной речи: изумрудно- зеленый, рубиново- красный, бирюзовый, аметистовый. Окраска минералов, один из основных диагностических признаков, не является ни постоянной, ни вечной.

Присутствие элементов — примесей в химической формуле кристалла приводит к специфической окраске.

Прозрачность кристалла — качество, которое отличается большой изменчивостью: непрозрачный кристалл можно легко отнести к прозрачным. Основная часть бесцветных кристаллов относятся к этой группе.

Прозрачность зависит от строения кристаллов — некоторые агрегаты и мелкие зерна гипса и слюды кажутся непрозрачными или просвечивающими, в то время как кристаллы прозрачны.

Но если рассматривать с лупой маленькие гранулы и агрегаты, можно видеть, что они прозрачны.

Твердость – довольно легко поцарапать кристалл кальцита кончиком ножа, но сделать это с кристаллом кварца вряд ли получится — лезвие скользнет по камню не оставив царапины. Значит, твердость у этих двух минералов различная.

Можно оценить твердость упрощенным способом. Минералы с твердостью 1 легко царапается ногтем; при они жирные на ощупь. Поверхность минералов с твердостью 2 также царапается ногтем. Медная проволока или кусочек меди царапает минералы с твердостью 3. Кончик перочинного ножа царапает кристаллы до твердости 5; хороший новый напильник — кварц.

Минералы с твердостью более 6 царапают стекло твердости 5. От 6 до 8 не берет даже хороший напильник; при таких попытках летят искры. Чтобы определить твердость, испытывают образцы с возрастающей твердостью, пока они под даются; затем берут образец, который очевидно, еще тверже.

Противоположным образом надо действовать, если необходимо определить твердость минерала, окруженного породой, твердость которой ниже, чем у кристалла, нужного для образца.

Легко сделать вывод на основании того. скользит ли кристалл по поверхности другого или царапает ее с легким скрипом. Могут наблюдаться следующие случаи:

  1. Твердость одинакова, если образец и кристалл взаимно не царапают друг друга.
  2. Возможно, что оба кристалла друг друга царапают, поскольку верхушки и выступы кристалла могут быть тверже, чем грани или плоскости спайности. Поэтому можно поцарапать грань кристалла гипса или плоскость его спайности вершиной другого кристалла гипса.
  3. Минерал царапает первый образец, а на нем делает царапину образец, а на нем делает царапину образец более высокого класса твердости. Его твердость находится посредине между используемые для сравнения образцами, и ее можно оценить в полкласса.

Теплопроводность. Если взять в руку кусок янтаря и кусок меди, покажется, что один из них теплее другого. Это впечатления обусловлено различной теплопроводностью данных кристаллов. Так можно различить стеклянные имитации драгоценных камней; для этого нужно приложить камушек к щеке, где кожа более чувствительна к теплу.

Магнетизм. Фрагменты или порошок некоторых минералов, в основном имеющих повышенное содержания железа, можно отличить от других сходных минералов с помощью магнита. Магнит и пирротин сильно магнитны и притягивают железные опилки. Некоторые минералы, например, гематит, приобретают магнитные свойства, если их раскалить докрасна.

Следующие свойства можно определить по тому, какие ощущения они вызывают у человека. На ощупь графит, и тальк кажутся гладкими, а гипс и каолин — сухими и шероховатыми.

Растворимые в воде кристаллы, такие как галит, сильвинит, эпсомит, имеют специфический вкус — соленый, горький, кислый.

Некоторые минералы, такие как сера, арсенопирит и флюорит обладают легко распознаваемый запахом, который возникает сразу при ударе по образцу.

Дефекты

Одномерные дефекты представляют собой дефекты кристалла, размер которых по одному направлению много больше параметра решетки, а по двум другим — соизмерим с ним. К линейным дефектам относят дислокации и дисклинации. Общее определение: дислокация — граница области незавершенного сдвига в кристалле.

Дислокации характеризуются вектором сдвига и углом ф между ним и линией дислокации. При φ=0 дислокация называется винтовой; при φ=90° — краевой; при других углах — смешанной и тогда может быть разложена на винтовую и краевую компоненты.

Дислокации возникают в процессе роста кристалла; при его пластической деформации и во многих других случаях. Их распределение и поведение при внешних воздействиях определяют важнейшие механические свойства, в частности, такие как прочность, пластичность, а также электропроводность и др.

Дисклинация — граница области незавершенного поворота в кристалле. Характеризуется вектором поворота.

Двухмерный дефект — Основной дефект-представитель этого класса — поверхность кристалла. Другие случаи — границы зёрен материала, в том числе малоугловые границы, плоскости двойникования, поверхности раздела фаз и др.

Трехмерные дефект — объёмные дефекты. К ним относятся скопления вакансий, образующие поры и каналы; частицы, оседающие на различных дефектах, например, пузырьки газов, пузырьки маточного раствора; скопления примесей в виде секторов и зон роста. Как правило, это поры или включения примесей фаз.

Представляют собой конгломерат из многих дефектов. Происхождение — нарушение режимов роста кристалла, распад пересыщенного твердого раствора, загрязнение образцов.

В некоторых случаях, например, при дисперсионном твердении объемные дефекты специально вводят в материал, для модификации его физических свойств.

Точечный дефект − это локальное нарушение кристаллической структуры, размеры которого во всех трех измерениях сравнимы с одним или несколькими (немногими) межатомными расстояниями. К простейшим точечным дефектам относятся вакансии − отсутствие атома или иона в узле кристаллической решетки и межузельные внедренные атомы, находящиеся в пустотах кристаллической решетки.

Важнейшей особенностью точечных дефектов в ионных и ковалентных кристаллах является то, что они могут быть как электрически нейтральны, так и иметь заряд. Однако в целом кристалл остается электрически нейтрален.

Условие электронейтральности обеспечивается образованием равного количества положительно и отрицательно заряженных дефектов, образованием сложных дефектов или свободных электронов и дырок.

Влияние дефектов на физические свойства кристаллов.

Несомненно, каждый реальный кристалл обладает всеми перечисленными и его свойства в связи с этим должны существенно отличаться от свойств идеализированных кристаллов. Дефекты структуры действительно оказывают сильное влияние на многие свойства кристаллов. К ним относятся твердость, электропроводность.

Эти свойства получили названия структурно чувствительных. Однако часто оказывается, что ответственным за какое — либо определенное свойство реального кристалла является один тип дефектов.

Это может быть обусловлено тем, что какой — либо дефект присутствует в гораздо большей концентрации чем прочие, либо же тем что на данное свойство прочие дефекты влияют в значительно меньшей степени.

Одним из типов дефектов, являются точечные дефекты, при которых недостает одного атома в узле кристаллической решетки обычно занимает таким атомом окружающие атомы медленно перемещаются в направлении к этому незанятному узлу.

Вакансии образуются в результате термического возбуждения, при этом число вакансий на единицу объема в металл приблизительно равно числу атомов на единицу объема пара находящимся в равновесии с данным кристаллом.

В больших количествах вакансии могут возникать под действием рентгеновских лучей.

Вследствие нарушения равновесных условий роста и захвата примесей при кристаллизации, а также под влиянием различного рода внешнего воздействия идеальная трехмерно — периодическая атомная структура.

Точечные дефекты являются причиной возникновения центр окрашивания кристаллов, например, мелкокристаллические порошки хлорид натрия при нагревании в парах натрия приобретают зеленовато — желтую окраску.

Избыточные ионы натрия остаются на поверхности, электроны диффундируют в объемах кристалла ионы хлора диффундируют к поверхности, оставляя равное количество анионных вакансий, обладающих эффективным положительным зарядом

Так кристаллы хлорида натрия приобретают одинаковую зеленовато — желтую окраску при нагревании их как в парах натрия, так и в парах кальция.

Литература:

  1. http://www.jewellery.org.ua/stones/games09.htm
  2. http://dssp.petrsu.ru/p/tutorial/ftt/Part3/part3_2.htm

Основные термины(генерируются автоматически): дефект, кристалл, твердость, минерал, кристаллическая решетка, свойство, реальный кристалл, граница области, желтая окраска, физическое свойство кристаллов.

Источник: https://moluch.ru/archive/121/33597/

Реферат: Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

Министерство образования и науки Украины

Донбасский государственный технический университет

Кафедра ОМД

ЛЕКЦИЯ

по дисциплине Металловедение

на тему

«Реальноестроениеметаллов. Дефекты кристаллического строения и их влияние на свойства металлов»

Ст.преп. Горецкий Ю.В.

Алчевск 2009

Реальноестроениеметаллов. Дефекты кристаллического строения и их влияние на свойства металлов

1. Классификациядефектов кристаллической решетки металлов

В реальном кристалле всегда имеются дефекты строения (несовершенства).

Дефекты кристаллического строения подразделяют по геометрическим признакам на 4 – е группы:

1. Точечные (нульмерные);

2. Линейные (одномерные);

3. Поверхностные (двухмерные);

4. Объемные (трехмерное).

2. Точечные дефекты

Эти дефекты малы во всех трех измерениях и размеры их не превышают нескольких атомных диаметров.

К точечным дефектам относят вакансии («дырки» – дефекты Шоттки), межузельные атомы (дефекты Френкеля), примесные атомы образующие твердые растворы внедрения и замещения.

Вакансии образуются в результате перехода атомов из узлов решетки на поверхность, или их полного испарения с поверхности кристалла (рис. 1).

С повышением температуры концентрация вакансий возрастает.

Межузельные атомы – эти дефекты образуются в результате перехода атома из узла решетки в междоузлие (на месте атома образуется вакансия). В металлах возникают очень трудно, связано с большими затратами энергий на переход атома в междоузлие.

Атомы примесей присутствующие даже в самом чистом металле, как правило, образуют твердые растворы (рис. 2)

Рисунок 1. Схема точечных дефектов в кристалле:

l – примесный атом замещения; 2 – дефект Шоттки; 3 – примесный атом внедрения; 4 – дивакансия; 5 – дефект Френкеля (вакансия и межузельный атом); 6 – примесный атом замещения

Рисунок 2. Схема точечных дефектов в кристалле (на примере решетки ОЦК):

l – чистый металл; 2 – твердый раствор замещения; 3 – твердый раствор внедрения

Точечные (нульмерные) дефекты являются центрами локальных искажений в кристаллической решетке. Однако заметные искажения решетки (смещение атомов), окружающие нульмерный дефект, создается только на расстояниях нескольких атомных диаметров (составляют доли межатомного расстояния).

Дефекты Шоттки и Френкеля оказывают влияние на свойства металлов: электропроводность, магнитные свойства, предопределяют процесс диффузии в металлах.

3. Линейные дефекты или одномерные

Эти несовершенства имеют малые размеры в двух измерениях и большую протяженность в третьем измерении. Дефект имеет протяженность несколько межатомных расстояний.

К линейным дефектам относятся дислокации, цепочки вакансий или цепочки межузельных атомов.

Различают дислокации следующих видов: краевые, винтовые, смешанные.

Краевая дислокация – представляет собой локализованное искажение кристаллической решетки, вызванное в ней наличием в ней «лишней» атомной полуплоскости – экстраплоскости, перпендикулярной к плоскости чертежа (рис. 3).

Рисунок 3. Краевая дислокация

Образуется дислокация при кристаллизации или сдвиге.

Рассмотрим образование дислокации при сдвиге.

Возьмем параллелепипед (кристалл) и проведем сдвиг верхней части кристалла относительно нижней на одно межатомное расстояние, при этом сдвиг охватывает не всю плоскость скольжения, а только часть её АВDС, граница АВ плоскости АВDС и будет дислокацией (рис. 4). Линия краевой дислокации перпендикулярна вектору сдвига t. В верхней части кристалла n плоскостей, а в нижней n – 1, т. е. на одну меньше.

Рисунок 4. Сдвиг, создавший краевую дислокацию

Если эксраплоскость находится в верней части кристалла, то дислокация положительная (┴), если в нижней – отрицательная (┬) (рис. 5).

Рисунок 5. Схема положительной и отрицательной дислокации

Край экстраплоскости представляет собой линию краевой (линейной) дислокации, длина которой может достигать многих тысяч межатомных расстояний. Дислокация может быть прямой или выгибаться в ту или другую сторону. Вокруг дислокации на протяжении пяти-семи атомных размеров кристаллическая решетка сильно искажена. Над дислокацией атомы в кристалле уплотнены, а под ней раздвинуты.

Винтовая дислокация – была открыта в 1939г. Бюргерсом. Образуется также при кристаллизации или сдвиге. Винтовую дислокацию можно определить как сдвиг одной части кристалла относительно другой.

Винтовая дислокация параллельна вектору сдвига (рис. 6). Рассмотрим винтовую дислокацию образующуюся при сдвиге.

Рисунок 6. Сдвиг, создавший винтовую дислокацию:

а – кристалл до сдвига надрезан по ABCD;

б – кристалл после сдвига; ABCD – зона сдвига

Сдвиг кристалла происходит по плоскости ABCD, винтовая дислокация представляет собой границу деформируемой и недеформируемой частью кристалла, т. е. линию BC.

При наличии винтовой дислокации кристалл можно рассматривать как состоящий из одной атомной плоскости, закрученной в виде винтовой поверхности. На рис. 7 показана винтовая дислокация на атомном уровне.

Рисунок 7. Кристалл с винтовой дислокацией, представляющей собой атомную плоскость, закрученную в виде винтовой лестницы (геликоида)

На рисунке 8 показано расположение атомов в двух вертикальных плоскостях, проходящих непосредственно по обе стороны от плоскости сдвига ABCD.

Если смотреть на них со стороны правой грани кристалла, то черные кружки обозначают атомы на вертикальной плоскости слева от плоскости сдвига, а светлые кружки – атомы на вертикальной плоскости справа от плоскости сдвига.

Заштрихована образовавшаяся при сдвиге ступенька на верхней грани кристалла.

Рисунок 8. Расположение атомов в области винтовой дислокации

Линия ВС представляет собой границу зоны сдвига внутри кристалла., отделяющую ту часть плоскости скольжения, где сдвиг уже произошел, от той части, где сдвиг еще не начинался.

Различают винтовые дислокации левые и правые. Винтовая дислокация параллельна вектору сдвига.

Смешанные дислокации – являются чисто краевой в точке С и чисто винтовой в точке А (рис. 9).

Рисунок 9. Сдвиг, создавший смешанную дислокацию АС

Смешанная дислокация (АС) имеет форму кривой линии. В промежутке между чисто краевым участком вблизи точки С и чисто винтовым вблизи точки А дислокация имеет смешанную ориентацию, промежуточную между краевой и винтовой.

Искажения кристаллической решетки, вызванные дислокациями.

Дислокации окружены полями упругих напряжений, вызывающих искажение кристаллической решетки.

В краевой дислокации выше края экстраплоскости межатомные расстояния меньше нормальных, а ниже края – больше.

Критерием искажения кристалла служит вектор Бюргерса.

Для определения вектора Бюргерса () краевой дислокации проводят вокруг дислокации контур ABCDE (рис. 10) – против часовой стрелки, одинаковое число межатомных расстояний; разность между контуром идеальной решетки и реальной (с дефектом) – АЕ и есть вектор Бюргерса (обозначают).

Рисунок 10. Схема определения вектора Бюргерса для линейной дислокации:

а) схема плоскости реального кристалла; б) решетка совершенного кристалла

Вектор Бюргерма позволяет найти силы, требуемые для продвижения дислокации, силы взаимодействия и энергию дислокаций и т.д. В краевой дислокации вектор Бюргерса перпендикулярен к её линии, а у винтовой – параллелен ей.

Дислокации находящиеся в одной плоскости скольжения и имеющие разные знаки (например ┴ и ┬) притягиваются и взаимно уничтожаются (аннигилируют) и наоборот.

Под действием напряжений дислокации двигаются (скользят), что определяет дислокационный механизм пластической деформации.

Дислокации влияют на прочностные пластические свойства металлов; а также и на их физические свойства – увеличивают электросопротивление, скорость диффузии и др.

Скопление примесных атомов внедрения у экстраплоскости дислокации называется облаком (атмосферой) Котрелла, при этом энергия упругих искажений в кристалле понижается.

Важной характеристикой дислокаций является величина плотности дислокации. Под плотностью дислокации понимают суммарную длину дислокации l, приходящуюся на единицу объема V кристалла в см/см3 = см-2 :

В металле имеется большое число дислокаций (106 -1012 см-2 ).

4. Поверхностные или двухмерные дефекты

Эти дефекты малы только в одном измерении. К ним относятся границы зерен, границы блоков, дефекты упаковки, двойниковые границы.

Металлы, используемые в технике, состоят из большого числа кристаллов неправильной формы, называемых зернами или кристаллитами.

По границам между зернами металла нарушается правильность строения кристаллической решетки. Обычно зерна повернуты произвольно.

Разориентация между соседними зернами составляет от нескольких градусов до десятков градусов (обычно более 50 ) (рис.11). Граница между зернами называется – большеугловой.

Рисунок 11. Схема поликристаллического строения металла

Каждое зерно металла состоит из отдельных блоков, субзерен (рис.12). Разориентировка между соседними субзернами составляет от нескольких секунд до нескольких минут (малоугловые границы). Малоугловые границы имеют дислокационное строение (ряд параллельно краевых дислокаций). В пределах каждого субзерна (блока) решетка почти идеальна.

Рисунок 12. Схема блочной структуры (дислокационное строение малоугловой границы)

Границы между отдельными кристаллитами (зернами) представляют собой переходную область шириной в 5 – 10 атомных размеров, в которой решетка одного кристалла, имеющего определенную кристаллографическую ориентацию, переходит в решетку другого кристалла, имеющего иное кристаллографическое направление. Поэтому на границе зерна атомы имеют менее правильное расположение, чем в объеме зерна (рис. 13).

Рисунок 13. Модель размещения атомов в объеме и на границе зерна

Двойники (границы двойников).

Двойникованием называют симметричную переориентацию областей кристаллической решетки. Решетка внутри двойниковой прослойки является зеркальным отображением решетки в остальной части кристалла (рис. 14)

Рисунок 14. Схема двойника

К поверхностным дефектам относятся также дефекты упаковки. Под ними подразумевают локальные изменения расположения плотно упакованных плоскостей в кристалле (нарушена последовательность упаковки слоев).

Порядок упаковки слоев атомов в решетке обозначается буквами А, В, С.

Порядок укладки для:

ГЦК решетки: АВС АВС АВС …

ГПУ решетки: АВ АВ АВ АВ …

Дефект упаковки: АВС АВС АВ АВ АВС АВС …

дефект

Нульмерные, двухмерные, одномерные дефекты относятся к микродефектам т. е. которые нельзя наблюдать невооруженным глазом.

5. К объемным (трехмерным) дефектам относят такие, которые имеют размеры в трех измерениях: неметаллические включения, царапины, макроскопические трещины, поры и т. д.

6. Диффузия – под ней понимают перемещение атомов в кристаллическом теле на расстояния, превышающие средние межатомные расстояния данного вещества.

Процессы связанные с диффузией: процесс кристаллизации, фазовые превращения, рекристаллизация, процессы насыщения поверхности другими компонентами.

Самодиффузия – процесс перемещения атомов не связанный с изменением концентрации и отдельных объемах.

Диффузия (гетеродиффузия) – перемещение атомов сопровождается изменением концентрации (происходит в металлах с повышенным содержанием примесей и в сплавах).

Диффузия может иметь циклический (рис. 15, а), обменный (рис. 15, б), вакансионный (рис. 15, в), межузельный характер (рис. 15, г). В металлах диффузия преимущественно осуществляется по вакансионному механизму. Может наблюдаться межузельный механизм диффузии (при диффузии в металле элементов с малым атомным радиусом) (рис. 15).

Рисунок 15. Механизм перемещения атомов в кристаллической решетке металла

Наиболее легко диффузия протекает по поверхности и границам зерен, где сосредоточены дефекты кристаллического строения (вакансии, дислокации и т.д.).

Литература

1. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М., 1972, 1980.

2. Гуляев А.П. Металловедение. М., 1986.

3. Новиков И.И. Дефекты кристаллического строения металлов. М., 1983.

4. Антикайн П.А. Металловедение. М., 1972.

Источник: https://www.bestreferat.ru/referat-228912.html

Строение реальных металлов

Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

Реальные металлы, которые используют в качестве конструкционных материалов, состоят из большого числа кристаллов неправильной формы. Эти кристаллы называют зернами, или кристаллитами, а строение — поликристаллическим, или зернистым.

Существующие технологии производства металлов не позволяют получить их идеальной чистоты, поэтому реальные металлы содержат примесные атомы. Любой металл, содержащий 99,9% — химически чистый, 99,99% — высокочистый, 99,999% — сверхчистый.

Атомы любых примесей по своим размерам и по своему строению резко отличаются от атомов основного компонента, поэтому силовое поле внутри реального металла и его строение сильно отличаются от теоретического. Дефекты кристаллического строения подразделяются по геометрическим признакам на поверхностные, точечные и линейные.

Поверхностные дефекты представляют собой поверхности раздела между отдельными зернами или субзернами в поликристаллическом металле; к ним относятся также дефекты упаковки.

Границы между отдельными зернами представляют переходную область шириной до нескольких десятков межатомных расстояний, в которой решетка одного зерна, имеющего определенную кристаллографическую ориентацию, переходит в решетку другого зерна, имеющего иную кристаллографическую ориентацию (рисунок 5, а).

Поэтому на границе зерна наблюдается искаженное кристаллическое строение и более высокое энергетическое состояние. Кроме того, на границах зерен в технических металлах скапливаются примеси, что еще больше нарушает правильный порядок расположения атомов.

Это определяет особенности поведения границ зерен при механическом, температурном и химическом воздействии.

В результате нарушенного строения границы ослабляют или упрочняют металл, что приводит соответственно к межкристаллитному (межзеренному) или транскристаллитному (по телу зерна) разрушению.

Под действием высоких температур металл стремится уменьшить поверхностную энергию границ зерен за счет роста зерен и сокращения протяженности их границ.

При химическом воздействии границы зерен оказываются более активными и вследствие этого коррозионное разрушение начинается по границам зерен (это лежит в основе микроанализа металлов при изготовлении шлифов).

а – графит

б – алмаз

в — фуллерен С60

Рисунок 4 — Полиморфные модификации углерода

Есть еще один источник поверхностного искажения кристаллического строения металла. Если рассмотреть зерно при большом увеличении, то окажется, что внутри его имеются участки, разориентированные друг относительно друга на угол 15’…30′. Такая структура называется блочной, или мозаичной, а области — блоками мозаики (рисунок 5, б).

Свойства металлов будут зависеть как от размеров блоков и зерен, так и от их взаимной ориентации.

а — границы зерен поликристаллического строения металлов;б — участки разориентированной структуры зерна — блоки мозаикиРисунок 5 — Источники поверхностных дефектов

Изучение строения металлов рентгеноструктурным анализом и электронной микроскопией позволило установить, что внутреннее кристаллическое строение зерна или блока не является правильным. В кристаллических решетках реальных металлов существуют дефекты, которые нарушают связи между атомами и оказывают влияние на свойства металлов. К ним относятся точечные и линейные дефекты.

Точечные дефекты малы в трех измерениях и размерами приближаются к точке. Виды этих дефектов приведены на рисунке 6.

Одним из распространенных дефектов является вакансия, т. е. место, не занятое атомом (дефект Шоттки). На место вакантного узла может перемещаться новый атом, а вакантное место — ”дырка” — образуется по соседству.

С повышением температуры концентрация вакансий возрастает, так как атомы, расположенные вблизи поверхности, могут выйти на поверхность кристалла, а их место займут атомы, находящиеся дальше от поверхности.

С повышением температуры концентрация вакансий возрастает, так как атомы, расположенные вблизи поверхности, могут выйти на поверхность кристалла, а их место займут атомы, находящиеся дальше от поверхности.

Наличие вакансий в решетке сообщает атомам подвижность, т.е. позволяет им перемещаться в процессе самодиффузии и диффузии и тем самым оказывает влияние на такие процессы, как старение, выделение вторичных фаз и т.п.

Другими точечными дефектами являются дислоцированные атомы (дефект Френкеля), т.е. атомы собственного металла, вышедшие из узла решетки и занявшие место где-то в междоузлии. При этом на месте переместившегося атома образуется вакансия. Концентрация таких дефектов невелика, т.к. для их образования требуется существенная затрата энергии.

а б в

а — вакансия; б — замещенный атом; в — внедренный атом

Рисунок 6 — Виды точечных дефектов

а б

а — краевая дислокация; б — винтовая дислокация

Рисунок 7 — Виды дислокаций

В любом металле присутствуют чужеродные атомы примесей, которые занимают в кристаллической решетке либо места основных атомов (замещение), либо внедряются внутрь ячейки (внедрение).

Вокруг точечных дефектов нарушаются правильность кристаллического строения, силовое поле атомов во всех направлениях.

Линейные дефекты малы в двух измерениях, в третьем они могут достигать длины кристалла (зерна). К линейным дефектам относятся цепочки вакансий, межузельных атомов и дислокации. Дислокации являются особым видом несовершенств в кристаллической решетке. С позиции теории дислокаций рассматриваются прочность, фазовые и структурные превращения.

Дислокацией называется линейное несовершенство, образующее внутри кристалла зону сдвига.

Дислокации бывают краевые и винтовые (рисунок 7).

Краевая дислокация образуется, если внутри кристалла появляется лишняя полуплоскость атомов, которая называется экстраплоскостью. Ее край 1-1 создает линейный дефект решетки, который называется краевой дислокацией.

Условно принято, что дислокация положительная, если она находится в верхней части кристалла и обозначается знаком ””, если дислокация находится в нижней части — отрицательная (“┬“). Дислокации одного и того же знака отталкиваются, а противоположного — притягиваются.

Под воздействием напряжения краевая дислокация может перемещаться по кристаллу (по плоскости сдвига), пока не достигнет границы зерна (блока). При этом образуется ступенька величиной в одно межатомное расстояние.

Винтовая дислокация (рисунок 7, б). Образуется неполным сдвигом кристалла по плотности Q. В отличие от краевой дислокации винтовая дислокация параллельна вектору сдвига. Она называется правой, если образована движением по часовой стрелке, и левой – против часовой стрелки.

Дислокации образуются в процессе кристаллизации металлов при ”захлопывании” группы вакансий, а также в процессе пластической деформации и фазовых превращений. Важной характеристикой дислокационной структуры является плотность дислокаций.

Под плотностью r дислокаций понимают суммарную длину дислокаций Sl (см), приходящуюся на единицу объема V кристалла (см3). Таким образом. размерность плотности дислокаций, см-2, у отожженных металлов — 106…108 см-2. При холодном пластическом деформировании плотность дислокаций возрастает до 1011…1012 см-2.

Более высокая плотность дислокаций приводит к появлению микротрещин и разрушению металла.

Дислокации наряду с другими дефектами участвуют в фазовых превращениях, рекристаллизации, служат готовыми центрами при выпадении второй фазы из твердого раствора.

Вдоль дислокаций скорость диффузии на несколько порядков выше, чем через кристаллическую решетку без дефектов. Дислокации служат местом концентрации примесных атомов, в особенности примесей внедрения, так как это уменьшает искажения решетки.

Примесные атомы образуют вокруг дислокации зону повышенной концентрации, которая мешает движению дислокаций и упрочняет металл.

Все перечисленные дефекты кристаллического строения приводят к появлению внутренних напряжений. По величине объема, где они уравновешиваются, различают напряжения I, II и III рода.

  • Внутренние напряжения I рода — это зональные напряжения, возникающие между отдельными зонами сечения или между отдельными частями детали. К ним относятся термические напряжения, которые появляются при ускоренном нагреве и охлаждении при сварке, термической обработке.
  • Внутренние напряжения II рода — возникают внутри зерна или между соседними зернами, обусловлены дислокационной структурой металла.
  • Внутренние напряжения III рода — возникают внутри объема порядка нескольких элементарных ячеек; главным источником являются точечные дефекты.

Внутренние остаточные напряжения являются опасными, так как складываются с действующими рабочими напряжениями и могут привести к преждевременному разрушению конструкции. Для снятия внутренних остаточных напряжений проводится отжиг I рода.

Энергетические условия и механизм процесса кристаллизации >
Дальше >

Учебные работы
по всем предметам

Источник: https://dprm.ru/materialovedenie/stroenie-realnyh-metallov

Дефекты кристаллического строения и их влияние на свойства материала

Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

В реальном строении технических материалов имеется целый ряд дефектов, которые значительно влияют на многие их свойства. Идеальное кристаллическое строение без каких-либо дефектов расположения атомов в пространстве у реальных материалов практически не встречается.

Эти дефекты кристаллического строения можно разделить на 3 группы в зависимости от геометрических размеров и расположения:

1) точечные;

2) линейные;

3) поверхностные.

1) Точечные дефекты кристаллического строения.

К ним относятся: а) несовершенства, называемые вакансиями (рисунок 1,a). Это отсутствие атомов в отдельных узлах кристаллической решетки. В идеальной решетке данные узлы были заняты атомами (ионами) материала.

Ближайшие к вакантному месту решетки атомы смещаются в сторону свободного узла за счет нарушения равновесия межатомных сил притяжения и отталкивания. В результате около вакансии наблюдается локальное искажение кристаллической решетки. Величина смещения атомов к центру вакансии зависит от типа кристаллической решетки.

Следующие за первым 1-2 атомных ряда также несколько смещаются в направлении к вакансии, но величина этих перемещений уже меньше.

a b

Рисунок 1 – Точечные дефекты в кристаллической решетке:

a – вакансия; b – атом в междуузлии (межузельный атом)

Присутствуя в металле, вакансии участвуют в реализации диффузионных процессов, поскольку один из механизмов диффузии в металлах — перемещение атомов по вакансиям. Следовательно, чем больше в материале вакансий, тем легче осуществляются диффузионные процессы. В свою очередь, диффузия лежит в основе многих процессов структурообразования в металлах и сплавах, формирующих их свойства.

Таким образом, наличие в материале вакансий играет существенную роль.

б) Несовершенства кристаллической решетки, обусловленные наличием некоторых атомов между узлами решетки (рисунок 1,b). Такой дефект называют межузельным атомом.

Вокруг атома в междуузлии за счет появления с его стороны сил отталкивания возникают локальные искажения кристаллической решетки. Величина таких искажений значительно больше, чем в случае образования вакансии. Смещение соседних атомов при подобном дефекте может достигать нескольких процентов от межатомного расстояния (до 20%).

Наличие в металлах междуузельных атомов вызывает некоторое упрочнение, повышение электросопротивления и влияет на некоторые другие свойства.

Количество точечных дефектов очень сильно возрастает с увеличением температуры и описывается зависимостью:

n » N e — u / K T, (1)

где n — число точечных дефектов (вакансий или междуузельных атомов),

N — число узлов решетки, среди которых подсчитывается количество дефектов,

u — энергия, затраченная на образование одного точечного дефекта,

K — постоянная Больцмана,

T — температура, K.

Следует иметь в виду, что энергия образования междуузельного атома в металле всегда больше, чем вакансии, и поэтому количество междуузельных атомов значительно меньше, чем вакансий (поскольку энергия на образование точечного дефекта входит в показатель степени выражения (1) ).

Количество точечных дефектов зависит не только от температуры и энергии их образования, но и от различных воздействий на материал. Так, например, при облучении металла нейтронами или протонами при его пластической деформации количество этих дефектов кристаллического строения возрастает.

2) Линейные дефекты кристаллического строения.

Основным дефектом этого типа являются дислокации. Дислокация — это дефект, представляющий собой лишнюю атомную полуплоскость, как бы вставленную в какой-то части кристалла.

Эту полуплоскость называют экстраплоскостью. В зависимости от геометрической направленности экстраплоскости в кристалле различают краевую дислокацию (рисунок 2,а) и винтовую дислокацию (рисунок 2,b) . На рисунке 2,б показана только экстраплоскость винтовой дислокации.

Рисунок 2 – Краевая и винтовая дислокации

В районе края экстраплоскости всегда большие искажения кристаллической решетки. Для оценки искаженности кристаллической решетки из-за наличия дислокации в кристалле, для характеристики плоскости расположения в нём дислокации и её энергии, используется параметр, называемый вектором Бюргерса.

Для краевой дислокации вектор Бюргерса перпендикулярен плоскости сдвига в кристалле, наблюдаемом при наличии дислокации. Представить себе этот параметр можно следующим образом.

Если в кристалле с дислокацией сделать обход по некоторому контуру вокруг этого дефекта (контур ABCDA на рисунке 3,а), а затем нанести такой же контур в идеальном кристалле, без дислокации (рисунок 3,б), то отрезок, необходимый для того чтобы замкнуть контур в идеальном кристалле, и будет являться вектором Бюргерса.

Рисунок 3 – Определение вектора Бюргерса

На рисунке 4 стрелками показано направление обхода, начиная от точки “А”. Отрезок DА на рисунке 3,а равен отрезку DЕ на рисунке 3,б. Соответственно, отрезок ЕА, показывающий степень не замкнутости контура на рис. 3.12б, и является вектором Бюргерса, который обозначается , т.е. ЕА= .

Величина вектора Бюргерса зависит от типа кристаллической решетки и от того, в какой плоскости лежит дислокация.

Например, в простой кубической решетке с параметром “а”, если краевая дислокация лежит в плоскости одной из граней куба, величина вектора Бюргерса 1 будет определена как = а (рисунок 3).

Если же дислокация лежит в другой плоскости, то величина вектора Бюргерса 2 будет = аÖ 3.

Количественной характеристикой дислокационной структуры является плотность дислокаций, обозначаемая буквой r. Это суммарная длина дислокаций в 1 см3 металла (расположенных в разных кристаллографических плоскостях). Плотность дислокаций r имеет размерность см/см3 или см-2.

Для реальных технических металлов r= 106 — 108 см-2.

Рисунок 4 – Векторы Бюргерса

Количество дислокаций в металле возрастает при пластической деформации, и в сильно деформированном металле плотность дислокаций может достигать значений 1012 см-2.

Наличие дислокаций в металле, их количество, подвижность в значительной степени определяют сопротивление металла деформации, прочность, пластические свойства.

Рисунок 5 – Механизм деформации в идеальном кристалле

(штриховой линией показана плоскость сдвига)

Плотность дислокаций влияет на прочность металла следующим образом: в идеальном металле, где нет дислокаций, наблюдается максимальная прочность (точка 1 на рисунке 6), т. к. для пластической деформации и разрушения нужно преодолеть все силы межатомной связи в плоскости сдвига (рисунок 5).

Рисунок 6 – Влияние плотности дислокаций на прочность металла

С появлением в металле дислокаций и увеличением их количества прочность сильно падает (до точки 3 на рисунке 6 для реального технического металла). Затем, при дальнейшем возрастании числа дислокаций (большеr = 106 — 107 см-2), прочность увеличивается.

Из графика на рисунке 5 следуют 2 направления для повышения прочности металла — одной из основных характеристик механических свойств. Первое: создать материал с идеальной кристаллической решеткой или близкой к этому.

Реализация этого направления представляет большие трудности. Искусственным путем получают кристаллы различных металлов (по специальной технологии), которые имеют прочность близкую к теоретической.

Теоретической же прочностью считают прочность материала с идеальной кристаллической решеткой, без дефектов (точка 1 на рисунке 6). Величина таких кристаллов небольшая, толщина порядка 2 мкм и длина около 10 мм.

Прочность таких искусственно получаемых кристаллов показана на рисунке 6 точкой 2.

Второе направление – это создание в структуре материала очень большого числа дислокаций. При этом происходит упрочнение, показанное на правой части графика на рисунке 6, например, точка 4. Такое упрочнение может быть получено пластическим деформированием, термической обработкой и другими методами, что широко используется в практике работы с реальным металлом.

3) Поверхностные дефекты кристаллического строения.

Реальный промышленный металл — это поликристаллическое твердое тело. При некотором увеличении под микроскопом можно увидеть, что он состоит из множества кристалликов, зерен (рисунок 7). Размер этих зерен может быть различным и составляет от нескольких микрон до нескольких десятков и сотен микрон.

Рисунок 7 – Поликристаллическое строение металла

Соседние зерна ориентированы друг относительно друга под углом в несколько десятков градусов (иногда говорят, что зерна разделяет большеугловая граница). Граничная область между зернами обычно бывает шириной от 2 до 10 межатомных расстояний. На рисунке 8 показано кристаллическое строение двух соседних зерен, расположенных под углом q, и строение границы между ними.

Рисунок 8 – Строение границы между зернами (линиями показаны атомно-кристаллические плоскости)

Как видно из рисунка 8, на границе между зернами имеется большое число дислокаций, микроучастки с искажениями кристаллической решетки. Кроме того, обычно на границах зерен находится значительное количество атомов примесей, имеющихся в металле.

Таким образом, зернограничная поверхность небольшой толщины насыщена дефектами кристаллического строения, искажениями решетки, атомами примесей. Такая область и считается поверхностным дефектом кристаллического строения.

Зерно, в свою очередь, состоит из более мелких образований, называемых фрагментами и блоками. Фрагменты расположены под углом в несколько градусов друг к другу, а блоки, самые маленькие структурные образования с размером от 0,1 до 10,0 микрон, расположены под углом в несколько минут. Границу между фрагментами, блоками обычно называют малоугловой.

Такие граничные области тоже содержат повышенное количество дефектов типа дислокаций, искажений решетки и др. Поэтому границы между фрагментами, блоками также относят к поверхностным дефектам кристаллического строения.

Вопросы:

1) Типы кристаллических решёток.

2) На какие группы делятся дефекты кристаллического строения?

3) Что такое точечные дефекты?

4) Что такое «атом в междоузлии»? Что такое вакансия?

5) Какие точечные дефекты встречаются чаще? Какие точечные дефекты вызывают наибольшие искажения?

6) Как влияет температура и пластическая деформация на количество точечных дефектов?

7) Что такое линейные дефекты?

8) Вектор Бюргерса. Как обозначается? Чему может быть равен? Показать вектор Бюргерса на рисунке.

9) Что такое плотность дислокаций? Как обозначается? Ед. измерения. Чему равна для технических металлов?

10) График зависимости прочности металла от плотности: изобразить; показать, как изменяется прочность металла с увеличением плотности дефектов.

11) Какими способами добиваются повышения прочности металла?

12) Что такое поверхностные дефекты кристаллического строения?

Источник: https://studopedia.info/5-32540.html

Строение реальных металлов. Дефекты кристаллического строения

Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

1. Точеные дефекты

2. Линейные дефекты:

3. Простейшие виды дислокаций – краевые и винтовые.

Из жидкого расплава можно вырастить монокристалл. Их обычно используют в лабораториях для изучения свойств того или иного вещества.

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, то есть, имеют поликристаллическое строение. Эти кристаллы называются зернами.

Они имеют неправильную форму и различно ориентированы в пространстве.

Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются, и явления анизотропии не наблюдается

В кристаллической решетке реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства:

· точечные – малые во всех трех измерениях;

· линейные – малые в двух измерениях и сколь угодно протяженные в третьем;

· поверхностные – малые в одном измерении.

Точеные дефекты

Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис. 2.1.)

Рис.2.1. Точечные дефекты

Вакансия – отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д.

), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий (облучение в циклотроне или нейтронной облучение в ядерном реакторе). Концентрация вакансий в значительной степени определяется температурой тела. Перемещаясь по кристаллу, одиночные вакансии могут встречаться.

И объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом – это атом, вышедший из узла решетки и занявший место в междоузлие. Концентрация дислоцированных атомов значительно меньше, чем вакансий, так как для их образования требуются существенные затраты энергии. При этом на месте переместившегося атома образуется вакансия.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

Линейные дефекты:

Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла.

Дислокация – это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Простейшие виды дислокаций – краевые и винтовые.

Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рис. 2.2)

а) б)

Рис. 2.2. Краевая дислокация (а) и механизм ее образования (б)

Неполная плоскость называется экстраплоскостью.

Большинство дислокаций образуются путем сдвигового механизма. Ее образование можно описать при помощи следующей операции. Надрезать кристалл по плоскости АВСD, сдвинуть нижнюю часть относительно верхней на один период решетки в направлении, перпендикулярном АВ, а затем вновь сблизить атомы на краях разреза внизу.

Наибольшие искажения в расположении атомов в кристалле имеют место вблизи нижнего края экстраплоскости. Вправо и влево от края экстраплоскости эти искажения малы (несколько периодов решетки), а вдоль края экстраплоскости искажения простираются через весь кристалл и могут быть очень велики (тысячи периодов решетки) (рис. 2.3).

Если экстраплоскость находится в верхней части кристалла, то краевая дислокация – положительная ( ), если в нижней, то – отрицательная ( ). Дислокации одного знака отталкиваются, а противоположные притягиваются.

Рис. 2.3. Искажения в кристаллической решетке при наличии краевой дислокации

Другой тип дислокаций был описан Бюргерсом, и получил название винтовая дислокация

Винтовая дислокация получена при помощи частичного сдвига по плоскости Q вокруг линии EF (рис. 2.4) На поверхности кристалла образуется ступенька, проходящая от точки Е до края кристалла.

Такой частичный сдвиг нарушает параллельность атомных слоев, кристалл превращается в одну атомную плоскость, закрученную по винту в виде полого геликоида вокруг линии EF, которая представляет границу, отделяющую часть плоскости скольжения, где сдвиг уже произошел, от части, где сдвиг не начинался.

Вдоль линии EF наблюдается макроскопический характер области несовершенства, в других направлениях ее размеры составляют несколько периодов.

Если переход от верхних горизонтов к нижним осуществляется поворотом по часовой стрелке, то дислокация правая, а если поворотом против часовой стрелки – левая.

Рис. 2.4. Механизм образования винтовой дислокации

Винтовая дислокация не связана с какой-либо плоскостью скольжения, она может перемещаться по любой плоскости, проходящей через линию дислокации. Вакансии и дислоцированные атомы к винтовой дислокации не стекают.

В процессе кристаллизации атомы вещества, выпадающие из пара или раствора, легко присоединяются к ступеньке, что приводит к спиральному механизму роста кристалла.

Линии дислокаций не могут обрываться внутри кристалла, они должны либо быть замкнутыми, образуя петлю, либо разветвляться на несколько дислокаций, либо выходить на поверхность кристалла.

Дислокационная структура материала характеризуется плотностью дислокаций.

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м2, или как суммарная длина линий дислокаций в объеме 1 м3

(см-2; м-2)

Плотность дислокаций изменяется в широких пределах и зависит от состояния материала. После тщательного отжига плотность дислокаций составляет 105…107 м-2, в кристаллах с сильно деформированной кристаллической решеткой плотность дислокаций достигает 1015…10 16 м –2.

Плотность дислокации в значительной мере определяет пластичность и прочность материала (рис. 2.5)

Рис. 2.5. Влияние плотности дислокаций на прочность

Минимальная прочность определяется критической плотностью дислокаций

Если плотность меньше значения а, то сопротивление деформированию резко возрастает, а прочность приближается к теоретической. Повышение прочности достигается созданием металла с бездефектной структурой, а также повышением плотности дислокаций, затрудняющим их движение.

В настоящее время созданы кристаллы без дефектов – нитевидные кристаллы длиной до 2 мм, толщиной 0,5…20 мкм — “усы“ с прочностью, близкой к теоретической: для железа = 13000 МПа, для меди =30000 МПа. При упрочнении металлов увеличением плотности дислокаций, она не должна превышать значений 1015…10 16 м –2.

В противном случае образуются трещины.

Дислокации влияют не только на прочность и пластичность, но и на другие свойства кристаллов. С увеличением плотности дислокаций возрастает внутреннее, изменяются оптические свойства, повышается электросопротивление металла.

Дислокации увеличивают среднюю скорость диффузии в кристалле, ускоряют старение и другие процессы, уменьшают химическую стойкость, поэтому в результате обработки поверхности кристалла специальными веществами в местах выхода дислокаций образуются ямки.

Дислокации образуются при образовании кристаллов из расплава или газообразной фазы, при срастании блоков с малыми углами разориентировки.

При перемещении вакансий внутри кристалла, они концентрируются, образуя полости в виде дисков. Если такие диски велики, то энергетически выгодно “захлопывание” их с образованием по краю диска краевой дислокации.

Образуются дислокации при деформации, в процессе кристаллизации, при термической обработке.

Поверхностные дефекты– границы зерен, фрагментов и блоков (рис. 2.6).

Рис. 2.6. Разориентация зерен и блоков в металле

Размеры зерен составляют до 1000 мкм. Углы разориентации составляют до нескольких десятков градусов ( ).

Граница между зернами представляет собой тонкую в 5 – 10 атомных диаметров поверхностную зону с максимальным нарушением порядка в расположении атомов.

Строение переходного слоя способствует скоплению в нем дислокаций. На границах зерен повышена концентрация примесей, которые понижают поверхностную энергию.

Однако и внутри зерна никогда не наблюдается идеального строения кристаллической решетки. Имеются участки, разориентированные один относительно другого на несколько градусов ( ). Эти участки называются фрагментами.

Процесс деления зерен на фрагменты называется фрагментацией или полигонизацией.

В свою очередь каждый фрагмент состоит из блоков, размерами менее 10 мкм, разориентированных на угол менее одного градуса ( ). Такую структуру называют блочной или мозаичной.

Лекция 3

Кристаллизации металлов. Методы исследования металлов.

1. Механизм и закономерности кристаллизации металлов.

2. Условия получения мелкозернистой структуры

3. Строение металлического слитка

4. Определение химического состава.

5. Изучение структуры.

6. Физические методы исследования

Любое вещество может находиться в трех агрегатных состояниях: твердом, жидком, газообразном. Возможен переход из одного состояния в другое, если новое состояние в новых условиях является более устойчивым, обладает меньшим запасом энергии.

С изменением внешних условий свободная энергия изменяется по сложному закону различно для жидкого и кристаллического состояний. Характер изменения свободной энергии жидкого и твердого состояний с изменением температуры показан на рис. 3.1.

Рис.3.1. Изменение свободной энергии в зависимости от температуры

В соответствии с этой схемой выше температуры ТS вещество должно находиться в жидком состоянии, а ниже ТS – в твердом.

При температуре равной ТS жидкая и твердая фаза обладают одинаковой энергией, металл в обоих состояниях находится в равновесии, поэтому две фазы могут существовать одновременно бесконечно долго. Температура ТS – равновесная или теоретическая температура кристаллизации.

Для начала процесса кристаллизации необходимо, чтобы процесс был термодинамически выгоден системе и сопровождался уменьшением свободной энергии системы. Это возможно при охлаждении жидкости ниже температуры ТS. Температура, при которой практически начинается кристаллизация называется фактической температурой кристаллизации.

Охлаждение жидкости ниже равновесной температуры кристаллизации называется переохлаждением, которое характеризуется степенью переохлаждения ( ):

Степень переохлаждения зависит от природы металла, от степени его загрязненности (чем чище металл, тем больше степень переохлаждения), от скорости охлаждения (чем выше скорость охлаждения, тем больше степень переохлаждени).

Рассмотрим переход металла из жидкого состояния в твердое.

При нагреве всех кристаллических тел наблюдается четкая граница перехода из твердого состояния в жидкое. Такая же граница существует при переходе из жидкого состояния в твердое.

Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров.

Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии.

Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах время – температура. Кривая охлаждения чистого металла представлена на рис. 3.2.

Рис.3.2. Кривая охлаждения чистого металла

– теоретическая температура кристаллизации;

. – фактическая температура кристаллизации.

Процесс кристаллизации чистого металла:

До точки 1 охлаждается металл в жидком состоянии, процесс сопровождается плавным понижением температуры.

На участке 1 – 2 идет процесс кристаллизации, сопровождающийся выделением тепла, которое называется скрытой теплотой кристаллизации.

Оно компенсирует рассеивание теплоты в пространство, и поэтому температура остается постоянной. После окончания кристаллизации в точке 2 температура снова начинает снижаться, металл охлаждается в твердом состоянии.

Механизм и закономерности кристаллизации металлов.

При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется.

Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым.

Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зависимость энергии системы от размера зародыша твердой фазы представлена на рис. 3.3.

Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.

Рис.3.3. Зависимость энергии системы от размера зародыша твердой фазы

Механизм кристаллизации представлен на рис.3.4.

Рис.3.4. Модель процесса кристаллизации

Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

Качественная схема процесса кристаллизации может быть представлена количественно кинетической кривой (рис.3.5).

Рис. 3.5. Кинетическая кривая процесса кристаллизации

Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться.

Таким образом, процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров.

В свою очередь, число центров кристаллизации (ч.ц.) и скорость роста кристаллов (с.р.) зависят от степени переохлаждения (рис. 3.6).

Рис. 3.6. Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения

Размеры образовавшихся кристаллов зависят от соотношения числа образовавшихся центров кристаллизации и скорости роста кристаллов при температуре кристаллизации.

При равновесной температуре кристаллизации ТS число образовавшихся центров кристаллизации и скорость их роста равняются нулю, поэтому процесса кристаллизации не происходит.

Если жидкость переохладить до температуры, соответствующей т.а, то образуются крупные зерна (число образовавшихся центров небольшое, а скорость роста – большая).

При переохлаждении до температуры соответствующей т.в – мелкое зерно (образуется большое число центров кристаллизации, а скорость их роста небольшая).

Если металл очень сильно переохладить, то число центров и скорость роста кристаллов равны нулю, жидкость не кристаллизуется, образуется аморфное тело. Для металлов, обладающих малой склонностью к переохлаждению, экспериментально обнаруживаются только восходящие ветви кривых.

Условия получения мелкозернистой структуры

Стремятся к получению мелкозернистой структуры. Оптимальными условиями для этого являются: максимальное число центров кристаллизации и малая скорость роста кристаллов.

Размер зерен при кристаллизации зависит и от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации – оксиды, нитриды, сульфиды.

Чем больше частичек, тем мельче зерна закристаллизовавшегося металла.

Стенки изложниц имеют неровности, шероховатости, которые увеличивают скорость кристаллизации.

Мелкозернистую структуру можно получить в результате модифицирования, когда в жидкие металлы добавляются посторонние вещества – модификаторы,

По механизму воздействия различают:

1. Вещества не растворяющиеся в жидком металле – выступают в качестве дополнительных центров кристаллизации.

2. Поверхностно — активные вещества, которые растворяются в металле, и, осаждаясь на поверхности растущих кристаллов, препятствуют их росту.

Строение металлического слитка

Схема стального слитка, данная Черновым Д.К., представлена на рис.3.7.

Рис. 3.7. Схема стального слитка

Слиток состоит из трех зон:

1. мелкокристаллическая корковая зона;

2. зона столбчатых кристаллов;

3. внутренняя зона крупных равноосных кристаллов.

Кристаллизация корковой зоны идет в условиях максимального переохлаждения. Скорость кристаллизации определяется большим числом центров кристаллизации. Образуется мелкозернистая структура.

Жидкий металл под корковой зоной находится в условиях меньшего переохлаждения. Число центров ограничено и процесс кристаллизации реализуется за счет их интенсивного роста до большого размера.

Рост кристаллов во второй зоне имеет направленный характер. Они растут перпендикулярно стенкам изложницы, образуются древовидные кристаллы – дендриты (рис. 3.8). Растут дендриты с направлением, близким к направлению теплоотвода.

Рис.3.8. Схема дендрита по Чернову Д.К.

Так как теплоотвод от незакристаллизовавшегося металла в середине слитка в разные стороны выравнивается, то в центральной зоне образуются крупные дендриты со случайной ориентацией.

Зоны столбчатых кристаллов в процессе кристаллизации стыкуются, это явление называется транскристаллизацией.

Для малопластичных металлов и для сталей это явление нежелательное, так как при последующей прокатке, ковке могут образовываться трещины в зоне стыка.

В верхней части слитка образуется усадочная раковина, которая подлежит отрезке и переплавке, так как металл более рыхлый (около 15…20 % от длины слитка)

Методы исследования металлов: структурные и физические

Металлы и сплавы обладают разнообразными свойствами. Используя один метод исследования металлов, невозможно получить информацию о всех свойствах. Используют несколько методов анализа.

Определение химического состава.

Используются методы количественного анализа.

1. Если не требуется большой точности, то используют спектральный анализ.

Спектральный анализ основан на разложении и исследовании спектра электрической дуги или искры, искусственно возбуждаемой между медным электродом и исследуемым металлом.

Зажигается дуга, луч света через призмы попадает в окуляр для анализа спектра. Цвет и концентрация линий спектра позволяют определить содержание химических элементов.

Используются стационарные и переносные стилоскопы.

2. Более точные сведения о составе дает рентгеноспектральный анализ.

Проводится на микроанализаторах. Позволяет определить состав фаз сплава, характеристики диффузионной подвижности атомов.

Изучение структуры.

Различают макроструктуру, микроструктуру и тонкую структуру.

1. Макроструктурный анализ – изучение строения металлов и сплавов невооруженным глазом или при небольшом увеличении, с помощью лупы.

Осуществляется после предварительной подготовки исследуемой поверхности (шлифование и травление специальными реактивами).

Позволяет выявить и определить дефекты, возникшие на различных этапах производства литых, кованных, штампованных и катанных заготовок, а также причины разрушения деталей.

Устанавливают: вид излома (вязкий, хрупкий); величину, форму и расположение зерен и дендритов литого металла; дефекты, нарушающие сплошность металла (усадочную пористость, газовые пузыри, раковины, трещины); химическую неоднородность металла, вызванную процессами кристаллизации или созданную термической и химико-термической обработкой; волокна в деформированном металле.

2. Микроструктурный анализ – изучение поверхности при помощи световых микроскопов. Увеличение 50…2000 раз. Позволяет обнаружить элементы структуры размером до 0,2 мкм.

Образцы – микрошлифы с блестящей полированной поверхностью, так как структура рассматривается в отраженном свете. Наблюдаются микротрещины и неметаллические включения.

Для выявления микроструктуры поверхность травят реактивами, зависящими от состава сплава. Различные фазы протравливаются неодинаково и окрашиваются по разному. Можно выявить форму, размеры и ориентировку зерен, отдельные фазы и структурные составляющие.

Кроме световых микроскопов используют электронные микроскопы с большой разрешающей способностью.

Изображение формируется при помощи потока быстро летящих электронов. Электронные лучи с длиной волны (0,04…0,12 ) ·10-8 см дают возможность различать детали объекта, по своим размерам соответствующе межатомным расстояниям.

Просвечивающие микроскопы. Поток электронов проходит через изучаемый объект. Изображение является результатом неодинакового рассеяния электронов на объекте. Различают косвенные и прямые методы исследования.

При косвенном методе изучают не сам объект, а его отпечаток – кварцевый или угольный слепок (реплику), отображающую рельеф микрошлифа, для предупреждения вторичного излучения, искажающего картину.

При прямом методе изучают тонкие металлические фольги, толщиной до 300 нм, на просвет. Фольги получают непосредственно из изучаемого металла.

Растровые микроскопы. Изображение создается за счет вторичной эмиссии электронов, излучаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов. Изучается непосредственно поверхность металла. Разрешающая способность несколько ниже, чем у просвечивающих микроскопов.

3. Для изучения атомно-кристаллического строения твердых тел (тонкое строение) используются рентгенографические методы, позволяющие устанавливать связь между химическим составом, структурой и свойствами тела, тип твердых растворов, микронапряжения, концентрацию дефектов, плотность дислокаций.

Физические методы исследования

1. Термический анализ основан на явлении теплового эффекта. Фазовые превращения в сплавах сопровождаются тепловым эффектом, в результате на кривых охлаждения сплавов при температурах фазовых превращений наблюдаются точки перегиба или температурные остановки. Данный метод позволяет определить критические точки.

2.Дилатометрический метод.

При нагреве металлов и сплавов происходит изменение объема и линейных размеров – тепловое расширение. Если изменения обусловлены только увеличением энергииколебаний атомов, то при охлаждении размеры восстанавливаются. При фазовых превращениях изменения размеров – необратимы.

Метод позволяет определить критические точки сплавов, температурные интервалы существования фаз, а также изучать процессы распада твердых растворов.

3 .Магнитный анализ.

Используется для исследования процессов, связанных с переходом из паромагнитного состояния в ферромагнитное (или наоборот), причем возможна количественная оценка этих процессов.

Лекция 4

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/14_44104_stroenie-realnih-metallov-defekti-kristallicheskogo-stroeniya.html

Несовершенства кристаллического строения и их влияние на свойства металлов

Реальное строение металлов Дефекты кристаллического строения и их влияние на свойства металлов

Идеальнаякристаллическая решетка представляетсобой многократное повторение элементарныхкристаллических ячеек. Для реальногометалла характерно наличие большогоколичества дефектов строения, нарушающихпериодичность расположения атомов вкристаллической решетке.

Различаюттри типа дефектов кристаллическогостроения:

1) Точечные дефекты характеризуются малыми размерами (несколько атомных диаметров) во всех трех измерениях

Вакансии – свободные места в узлах кристаллической решетки

Дислоцированные атомы – атомы, сместившиеся из узлов кристаллической решетки в межузельные промежутки

Примесные атомы – атомы других элементов, находящиеся как в узлах, так и в междоузлиях кристаллической решетки

Точечные дефекты не закреплены вопределенных объемах металла, онинепрерывно перемещаются в кристаллическойрешетке в результате диффузии.

Производят локальное изменение межатомныхрасстояний, тем самым, искажаякристаллическую решетку. При этомувеличивается сопротивление решеткидальнейшему смещению атомов, чтоспособствуетнекоторому упрочнению кристаллов иповышает их электросопротивление

2) Линейныедефекты характеризуются малыми размерамив двух измерениях, но имеют значительнуюпротяженность в третьем измерении.Такой вид дефекта называетсядислокацией.Различают дислокации краевые и винтовые.

Краевая дислокация

(наличие экстраплоскости)

Винтовая дислокация

(сдвиг атомных слоев по плоскости)

Смещенные атомыстремятся переместиться в равновесноеположение. При движении дислокациивдоль направления сдвига через веськристалл происходит смещение верхнейи нижней его частей на одно межатомноерасстояние. В результате перемещениядислокация выходит на поверхностькристалла и исчезает.

Вблизи линиидислокации атомы смещены со своих местои кристаллическая решетка искажена,что вызывает поле напряжений.

Установлено, чтодислокации притягивают в свою зонуатомы примесей, которые осаждаются ввиде цепочки вдоль края экстраплоскости(атмосферы Коттрелла) и снижаютуровень упругих искажений дислокационнойструктуры. При повышенииtатм. Коттрелла рассеиваются, а припониженииtдо достижения предела растворимостиони могут образовывать дисперсныевыделения второй фазы.

С повышением плотности дислокаций(суммарная длинадислокации в единице объема кристалла,см/см3=см-2)их движение все более затруднено и дляпродолжения деформации требуетсяувеличение прилагаемой нагрузки, врезультате металл упрочняется.

Упрочнению способствуют и др. несовершенствакристаллического строения, тормозящиедвижения дислокаций – примеси илегирующие элементы, частицы выделенийвторой фазы, границы зерен, а такженаклеп, т.о., низкие температуры.

Общееколичество дислокаций в кристаллехарактеризуют плотностьюдислокаций.Это суммарная длина линий дислокацийв единице объёма [см/см3]или, что то же самое, число пересеченийдислокациями единичной площадки [1/см2].

Кривая И.А. Одинга

Теоретическая прочность – определяется силами межатомного сцепления.

Усы – нитевидные кристаллы железа 0,5-2 мкм  100 мм без дефектов с прочностью В = 13 500 МПа, что близко к теоретической прочности.

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку в 1 м2, или как суммарная длина дислокаций в 1 м3. Плотность дислокаций обычно колеблется от 106 до 107 на 1 м2 в наиболее совершенных монокристаллах и до 1015–1016 на 1 м2 в сильно искаженных (наклёпанных) металлах.

При плотности дислокаций более 1012 в металле образуются субмикроскопические трещины, вызывающие разрушение.

3) Поверхностныедефекты имеют малую толщину и значительныеразмеры в двух других измерениях. Обычноэто места стыка двух ориентированныхучастков кристаллической решетки. Имимогут быть, например, границы зерен.

Зерно – это кристалл неправильнойформы, выросший из одного зародыша.Соседние зерна по своему кристаллическомустроению имеют неодинаковую ориентировкурешеток.

Граница между зернами представляетсобой узкую переходную зону шириной5-10 атомных расстояний с нарушеннымпорядком расположения атомов. В граничнойзоне кристаллическая решетка одногозерна переходит в решетку другого зерна.Неупорядоченное строение переходногослоя усугубляется скоплением в этойзоне дислокаций и повышенной концентрациейпримесей.

Границы зеренпрепятствуют перемещению дислокацийи являются местом повышенной концентрациипримесей, что оказывает существенноевлияние на механические свойстваметалла. Измельчение зерна увеличиваетпластичность и вязкость металла.

Помимоперечисленных дефектов в металле имеютсямакродефектыобъемного характера:поры, газовые пузыри, неметаллическиевключения, микротрещины. Эти дефектыснижают прочность металла.

12

Источник: https://studfile.net/preview/5862326/page:5/

Refy-free
Добавить комментарий