Расчет защитного заземления и зануления

Расчет защитного заземления

Расчет защитного заземления и зануления

В технической литературе часто рассказывается про заземление и зануление. Действительно, вопрос о заземлении в домах и квартирах встал в нашей стране относительно недавно. Еще когда бригады коммунистов электрифицировали страну,  в деревенские домики подводили только фазу и ноль. Про провод заземления умалчивали.

Во-первых, экономили алюминий как стратегический металл для самолетов, а во-вторых, мало кого заботили проблемы с защитой населения от поражения электрическим током, а в-третьих, не думали о заземлении как о эффективной мере защиты людей.

Прошло достаточно времени, чтобы исчезли коммунисты, а вместе с ними и распалась страна, в которой они правили, но памятники, оставшиеся после них, все еще стоят. Памятники стоят, а дома разрушаются.

В нашим домах заземлены только трубы водопровода, канализации и газопровода, а также поэтажные щитки. При этом трубы газопровода для заземления не подходят из-за взрывчатого газа, который по ним летит. Трубы канализации для заземления также использовать нельзя.

Хоть канализация сплошь из чугуна, но стыки чугунных труб заделаны цементом, который является плохим проводником. Трубы водопровода вроде как являются неплохим заземлением, но нужно учитывать, что трубы прокладывают не в земле, а в слое изоляции в специальных каналах.

Самое надежное заземление – от распределительного этажного щита.

На предприятиях все изначально делали грамотно и заземляли все, что можно.  Кроме заземления на предприятиях используется зануление. Многие ошибочно считают, что зануление — это проводок в розетке от нулевого провода к заземляющему контакту. Понятия «заземление» и «зануление» тесно связаны с понятием нейтрали.

Нейтраль – точка схождения трех фаз через обмотки в трансформаторе, соединенных звездой. Если эту точку соединить с заземлителями, то образуется глухозаземленная нейтраль трансформатора, и общую систему называют заземленной. Если к этой точке приварить шину и соединить ее со всеми приборам и аппаратам, то оборудование окажется заземленным.

Если нейтраль соединить с нулевой шиной (без заземлителей), то образуется изолированная нейтраль трансформатора, и общую систему называют зануленной. Если эту шину соединить со всеми приборами и аппаратами, то оборудование окажется зануленным.

Идея в том, что по заземленному или зануленному проводнику течет ток только при перекосе фаз, но это для трансформатора и при аварийных режимах работы. Нельзя выбирать — занулять или заземлять оборудование. Это сделано уже на подстанции. Обычно используется глухозаземленная нейтраль.

Если к примеру обмотка двигателя стиральной машины разрушилась и появилось сопротивление между корпусом и обмоткой, то на корпусе стиральной машины будет потенциал, который можно обнаружить индикаторной отверткой.

Если машина не заземлена, то при касании корпуса потенциал машины станет потенциалом вашей руки, а т.к.

ванная, где находится машина, является помещением особо опасным с точки зрения поражения током и следовательно пол является токопроводящим, нога приобретет нулевой потенциал и значит вы получите удар напряжением, пропорциональным потенциалу руки.

Если машину заземлить, то в теории сработает автоматический выключатель защиты. Если машину занулить, то потенциал растечется вокруг всей машины и при касании потенциалы руки и ноги будут одинаковыми. Только надо учитывать, что ток растекается вокруг и при шагании ноги оказываются под разными потенциалами. И, конечно, можно получить удар напряжением.

Критерии применения заземления

Защитное заземление — преднамеренное электрическое соединение с землёй или её эквивалентом металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением.

Защитное заземление применяется в сетях напряжением до 1000 В переменного тока – трёхфазные трехпроводные с глухозаземленной нейтралью; однофазные двухпроводные, изолированные от земли; двухпроводные сети постоянного тока с изолированной средней точкой обмоток источника тока; в сетях выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Заземление обязательно во всех электроустановках при напряжении 380 В и выше переменного тока, 440 В и выше постоянного тока, а в помещениях с повышенной опасностью, особо опасных и в наружных установках при напряжении 42 В и выше переменного тока, 110 В и выше постоянного тока; при любых напряжениях во взрывоопасных помещениях.

В зависимости от места размещения заземлителей относительно заземляющего оборудования различают два типа заземляющего устройств — выносное и контурное.

При выносном заземляющем устройстве заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование.

При контурном заземляющем устройстве электроды заземлителя размещают по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки.

В открытых электроустановках корпуса присоединяют непосредственно к заземлителю проводами. В зданиях прокладывается магистраль заземления, к которой присоединяют заземляющие провода. Магистраль заземления соединяют с заземлителем не менее чем в двух местах.

В качестве заземлителей в первую очередь следует использовать естественные заземлители в виде проложенных под землёй металлических коммуникаций (за исключением трубопроводов для горючих и взрывчатых веществ, труб теплотрасс), металлических конструкций зданий, соединённых с землёй, свинцовых оболочек кабелей, обсадных труб артезианских колодцев, скважин, шурфов и т.д.

В качестве естественных заземлителей подстанций и распределительных устройств рекомендуется использовать заземлители опор отходящих воздушных линий электропередачи, соединённых с заземляющим устройством подстанций или распределительным устройством с помощью грозозащитных тросов линий.

Если сопротивление естественных заземлителей Rз удовлетворяет требуемым нормам, то устройство искусственных заземлителей не требуется. Но это можно только измерить. Посчитать сопротивление естественных заземлителей нельзя.

Когда естественные заземлители отсутствуют или использование их не даёт нужных результатов, применяют  искусственные заземлители — стержни из угловой стали размером 50Х50, 60Х60, 75Х75 мм с толщиной стенки не менее 4 мм, длиной 2,5 — 3 м; стальные трубы диаметром 50—60 мм, длиной 2,5 — 3 м с толщиной стенки не менее 3,5 мм; прутковая сталь диаметром не менее 10 мм, длиной до 10 м и более.

Заземлители забивают в ряд или по контуру на такую глубину, при которой от верхнего конца заземлителя до поверхности земли остаётся 0,5 — 0,8 м. Расстояние между вертикальными заземлителями должно быть не менее 2,5—3 м.

Для соединения вертикальных заземлителей между собой применяют стальные полосы толщиной не менее 4 мм и сечением не менее 48 кв.мм  или стальной провод диаметром не менее 6 мм. Полосы (горизонтальные заземлители) соединяют с вертикальными заземлителями сваркой. Место сварки обмазывается битумом для влагоизоляции.

Магистрали заземления внутри зданий с электроустановками напряжением до 1000 В выполняют стальной полосой сечением не менее 100 кв.мм или сталью круглого сечения той же проводимости. Ответвления от магистрали к электроустановкам выполняют стальной полосой сечением не менее 24 кв.мм или круглой сталью диаметром не менее 5 мм.

Нормируемые сопротивления заземляющих устройств приведены в табл.1.

Таблица 1. Допустимые сопротивления заземляющего устройства в электроустановках до и выше 1000 В

Наибольшие допустимые значения Rз, ОмХарактеристика электроустановок
Rз < 0,5Для электроустановок напряжением выше 1000В и расчётным током замыкания на землю Iз < 500А
Rз = 250 / Iз < 10Для электроустановок напряжением выше 1000В и расчётным током замыкания на землю Iз < 500А
Rз = 125 / Iз < 10При условии, что заземляющее устройство является общим для злектроустановок напряжением до и выше 1000 В и расчётном токе замыкания на землю Iз < 500
Rз < 2В электроустановках напряжением 660/380 В
Rз < 4В электроустановках напряжением 380/220 В
Rз < 8В электроустановках напряжением 220/127 В

Расчётные токи замыкания на землю принимают по данным энергосистемы либо путём расчётов. В принципе, при строительстве коттеджа ток замыкания на землю не нужен. Это вопрос заземления подстанции.

Расчёт заземления методом коэффициентов использования производится следующим образом.

1. В соответствии с ПУЭ устанавливается необходимое сопротивление заземления Rз по таблице 1.

2. Определяют путём замера, расчётом или на основе данных по работающим аналогичным заземлительным устройствам возможное сопротивление растеканию естественных заземлителей Rе.

3. Если RеRз, то необходимо устройство искусственного заземления.

4. Определяют удельное сопротивление грунта ρ из таблицы 2. При производстве расчётов эти значения должны умножаться на коэффициент сезонности, зависящий от климатических зон и вида заземлителя (таблица 3).

Таблица 2. Приближенные значения удельных сопротивлений грунтов и воды p, Ом•м

Наименование грунтаУдельное сопротивление, Ом•м
Песок700
Супесок300
Суглинок100
Глина40
Садовая земля40
Глина (слой 7-10 м) или гравий70
Мергель, известняк, крупный песок с валунами1000-2000
Скалы, валуны2000-4000
Чернозём20
Торф20
Речная вода (на равнинах)10-100
Морская вода0,2-1

Примерное распределение государств СНГ по климатическим зонам:

1 зона: Архангельская, Кировская, Омская, Иркутская области, Коми, Урал;

2 зона: Ленинградская и Вологодская области, центральная часть России, центральные области Казахстана, южная часть Карелии.

3 зона: Латвия, Эстония, Литва, Беларусь, южные области Казахстана; Псковская, Новгородская, Смоленская, Брянская, Курская и Ростовская области.

4 зона: Азербайджан, Грузия, Армения, Узбекистан, Таджикистан, Киргизия, Туркмения (кроме горных районов), Ставропольский край, Молдова.

Таблица 3. Признаки климатических зон и значения коэффициента Кс

Данные, характеризующие климатические зоны и тип применяемых заземляющих электродовКлиматические зоны СНГ
1234
Климатические признаки зон:
средняя многолетняя низшая температура (январь), °Сот -20 до -15от -14 до -10от -10 до 0от 0 до +5
средняя многолетняя высшая температура (июль), °Сот +16 до +18от +18 до +22от +22 до +24от +24 до +26
среднегодовое количество осадков, мм~400~500~500~300-500
продолжительность замерзания вод, дн190-1701501000
Значение коэффициента Кс при применении стержневых электродов длиной 2 — 3 м и глубине заложения их вершины 0,5 — 0,8 м1,8-21,5-1,81,4-1,61,2-1,4
Значение коэффициента К'с при применении протяжённых электродов и глубине заложения их вершины 0,8 м4,5-7,03,5-4,52,0-2,51,5-2,0
Значение коэффициента Кс при длине 5 м и глубине заложения вершины 0,7-0,8 м1,351,251,151,1

5. Определяют сопротивление, Ом, растеканию одного вертикального заземлителя — стержневого круглого сечения (трубчатый или уголковый) в земле:

Таблица 4. Коэффициенты использования Мв вертикальных электродов из труб, уголков или стержней, размещённых в ряд без учёта влияния полосы связи

Отношение расстояния между электродами к их длине: а/lЧисло электродов МвМв
120,84-0,87
30,76-0,80
50,67-0,72
100,56-0,62
150,51-0,56
200,47-0,50
220,90-0,92
30,85-0,88
50,79-0,83
100,72-0,77
150,66-0,73
200,65-0,70
320,93-0,95
30,90-0,92
50,85-0,88
100,79-0,83
150,76-0,80
200,74-0,79

Таблица 5. Коэффициенты использования Мв вертикальных электродов из труб, уголков или стержней, размещённых по контуру без учёта влияния полосы связи

Отношение расстояния между электродами к их длине а/lЧисло электродов МвМв
140,66-0,72
60,58-0,65
100,52-0,58
200,44-0,50
400,38-0,44
600,36-0,42
1000,33-0,39
240,76-0,80
60,71-0,75
100,66-0,71
200,61-0,66
400,55-0,61
600,52-0,58
1000,49-0,55
340,84-0,86
60,78-0,82
100,74-0,78
200,68-0,73
400,64-0,69
600,62-0,67
1000,59-0,65

6. При устройстве простых заземлителей в виде короткого ряда вертикальных стержней расчёт на этом можно закончить и не определить проводимость соединяющей полосы, поскольку длина её относительно невелика (в этом случае фактически сопротивление заземляющего устройства будет несколько завышено). В итоге общая формула для расчета сопротивления вертикальных заземлителей выглядит так

где

р — Приближенные значения удельных сопротивлений грунтов и воды, Ом•м, таблица 2

КС — Признаки климатических зон и значения коэффициента, таблица 3.

L – длина вертикального заземлителя, м

d – диаметр вертикального заземлителя, м

t’ – длина от поверхности земли до середины вертикального заземлителя, м

Мв – коэффициент использования вертикальных заземлителей, зависящий от количества заземлителей и расстояния между ними (табл.4, 5). Предварительное количество вертикальных заземлителей для определения Мв можно принять равным Мв=rв/Rз

а – расстояние между вертикальными заземлителями (обычно отношение расстояния между вертикальными заземлителями к их длине принимают равным а/l=1;2;3)

Rз – Допустимые сопротивления заземляющего устройства в электроустановках до и выше 1000 В  , таблица 1

при этом  l>d,  t0>0,5 м;

для уголка с шириной полки b получают d=0,95b.

Для горизонтальных заземлителей расчет ведется тем же методом коэффициента использования

1. Определяют сопротивление, Ом, растеканию горизонтального заземлителя. Для круглого стержневого сечения:

Таблица 6. Коэффициенты использования Мг горизонтального полосового электрода (трубы, уголки, полосы и т.д.) при размещении вертикальных электродов в ряд.

Отношение расстояния между электродами к длине a/lМг при числе электродов в ряд
4581020305065
10,770,70,670,620,420,310,20,2
20,890,90,790,750,560,460,40,34
30,920,90,850,820,680,580,50,47

Таблица 7. Коэффициент использования Мг горизонтального полосового электрода (трубы, уголки, полосы и т.д.) при размещении вертикальных электродов по контуру.

Отношение расстояния между электродами к длине a/lМг при числе электродов в контуре заземления
4581020305070100
10,450,40,360,340,270,240,210,20,19
20,550,480,430,40,320,30,280,260,24
30,650,640,60,560,450,410,370,350,33

где

р — приближенные значения удельных сопротивлений грунтов и воды, Ом•м, таблица 2

КС — признаки климатических зон и значения коэффициента, таблица 3.

L – длина горизонтального заземлителя, м

d – диаметр горизонтального заземлителя, м

t’ – длина от поверхности земли до середины горизонтального заземлителя, м

Мв—коэффициент использования горизонтальных заземлителей, зависящий от количества заземлителей и расстояния между ними (табл. 6, 7).

а – расстояние между горизонтальными заземлителями (обычно отношение расстояния между горизонтальными заземлителями к их длине принимают равным а/l=1;2;3)

Rз – Допустимые сопротивления заземляющего устройства в электроустановках до и выше 1000 В, таблица 1

Здесь l>d, l>>4t’. Для полосы шириной b получают d=0,5b.

Пример 1

Рассчитать заземляющее устройство заводской подстанции 35/10 кВ, находящейся во второй климатической зоне. Сети 35 и 10 кВ работают с незаземленной нейтралью. На стороне 35 кВ Iз=8А, на стороне 10 кВ  Iз=19А.

Собственные нужды подстанции получают питание от трансформатора 10/0,4 кВ с заземленной нейтралью на стороне 0,4 кВ, естественных заземлителей нет. Удельное сопротивление грунта при нормальной влажности p=62 Ом*м.

Электрооборудования подстанции занимает площадь 18*8 кв.м.

Решение

Прикинем количество вертикальных электродов 10 шт. по таблице 5, Мв=0,58.

Найдем количество вертикальных электродов

Если Nв10,  нужно увеличить Мв, что соответственно увеличит и примерное количество электродов.

Прикинем количество горизонтальных электродов 50 шт. по таблице 6, Мг=0,2.

Если Nг50, то нужно увеличить Мв, что соответственно увеличит и примерное количество электродов.

Пример 2

Рассчитать заземляющее устройство коттеджа в Беларуси. Коттедж стоит на глинистой почве, следовательно удельное сопротивление грунта p=40 Ом*м. Для заземления используется арматура диаметром 12 мм и длиной 2 метра.

Решение

По таблице 1 – Rз=4

По таблице 2 – р=40 Ом*м

По таблице 3 – Кс=1,6

Электроды будут размещаться в ряд, поэтому по таблице 4 прикинем количество вертикальных электродов, например 10 шт. Мв=0,62
Глубина забивания всех электродов от поверхности земли – 0,7 метра, плюс к этому половина длины двухметрового электрода и следовательно t’=1,7 метра.

Найдем количество вертикальных электродов

Если Nв>10, то нужно увеличить Мв, что соответственно увеличит и примерное количество электродов.

По таблице 4 прикинем количество вертикальных электродов, итого 15 шт. Мв=0,56

Если Nв30, то нужно увеличить Мг, что соответственно увеличит и примерное количество электродов.

По таблице 6 прикинем количество горизонтальных электродов, например 50 шт. Мг=0,21

Если Nг

Источник: http://www.volt-220.com/theory/ground.html

Защитное заземление | Защитное зануление

Расчет защитного заземления и зануления

Согласно действующим техническим нормативам (ПУЭ, в частности) при эксплуатации любого электрооборудования повышенное внимание уделяется защите рабочего персонала и частного потребителя от удара электрическим током. При исследовании этой проблемы обычно затрагиваются такие технические вопросы, как:

  1. что называют защитным заземлением вообще?;
  2. возможность подключения к элементам контура и выбор типа заземляющего устройства (ЗУ);
  3. что предпочтительнее: защитное заземление или так называемое «зануление»?

Еще одним немаловажным моментом является желание пользователя ознакомиться с тем, как можно рассчитать рабочие параметры заземлителя и как работает эта конструкция. Каждый из этих вопросов, касающихся устройств защитного заземления нуждается в отдельном и тщательном рассмотрении.

Классификация заземляющих систем (естественные и искусственные конструкции)

В качестве заземляющих устройств с характеристиками, соответствующими требованиям ПУЭ, широко применяются как естественные, так и искусственные системы и приспособления. Естественными ЗУ называются уже заглубленные в землю металлические конструкции и трубопроводы или их части, находящиеся в непосредственном соприкосновении с грунтом.

Дополнительная информация: К ним также относят не имеющие разрывов оболочки кабелей, металлические шпунты и подобные им элементы заземленных конструкций и систем коммуникации.

Естественные заземлители зданий и сооружений

Поскольку на обустройство таких ЗУ специальных затрат совершенно не требуется – действующими нормативами они рекомендуются к применению в первую очередь.

И только в случае, если естественные заземляющие конструкции отыскать не удается – приходится устраивать их искусственный аналог.

Для выяснения того, что является определением понятия искусственного заземления, потребуется разобраться с ним более подробно.

Под такой системой понимается устройство, изготавливаемое специально в целях организации местного заземления на трансформаторной подстанции или на стороне потребителя.

В качестве элементов конструкции традиционно применяются вбиваемые вертикальные или укладываемые горизонтальные стальные заготовки.

В первом случае используются стальные прутки диаметром не менее 12 мм и длиной 3-5 метра, а во втором – уголки с типоразмером 50x50x6 мм. Для этой же цели могут выбираться металлические трубы диаметром не менее 6 мм.

Установка заземлителя в грунт

Вертикальные электроды (смотрите фото слева) забиваются в грунт на глубину 2,5 метра, для чего в нем предварительно подготавливается траншея глубиной около 0,5-0,6 метра.

Оголовок вбитого электрода должен выступать над поверхностью земли выкопанной траншеи на высоту порядка 0,1-0,2 метра. Вертикальные элементы конструкции соединяются с горизонтальными перемычками на сварку.

Обратите внимание: Систему траншей с размещенными в них электродными прутьями необходимо засыпать выбранной ранее землей, очищенной от крупных камней и постороннего мусора.

Выбор параметров электродных прутьев и глубина их погружения зависят от характера грунта в данной местности и особенностей ее климатических условий.

Согласно ГОСТ и действующим положениям ПУЭ сопротивление Rз контура заземления на протяжении периода эксплуатации должно составлять:

  1. не более 8 Ом при питающем фазном напряжении подстанции 220/127 Вольт,
  2. порядка 4 Ома при линейном питающем напряжении 380 Вольт;
  3. не более 2-х Ом при электропитании 660/380 Вольт.

Эти параметры действительны для случая, когда ЗУ применяются в сетях напряжением до 1000 Вольт. Если они обустраивается для действующих электроустановок с рабочими напряжениями выше 1000 Вольт и с малыми токами замыкания на землю – сопротивление высчитывается по специальным формулам (смотрите ПУЭ).

Защитное заземление и зануление

Чтобы понять, что такое защитное заземление – потребуется разобраться в особенностях организации и обустройства. При этом важно научиться отличать его от рабочего аналога, необходимого для нормального функционирования питающих цепей.

Защитное заземление в отличие от рабочего обеспечивает безопасные условия для обращения с оборудованием, открытые части которого в случае аварии оказываются под напряжением. Однако нередки ситуации, когда обустроить защитный контур на конкретном объекте не представляется возможным.

Это может быть связано с отсутствием условий для его размещения или другими причинами организационного характера.

Важно! Для защиты человека от удара током в условиях, когда невозможно организовать обычное заземление, используется защитное зануление.

Чтобы детально разобраться в том, что это такое защитное зануление потребуется ознакомиться с принципом его действия. Суть этой системы заключается в соединении открытых токопроводящих частей, которые могут оказаться под напряжением, с наглухо заземленной нейтралью питающей линии (трансформатора).

Защитное заземление и зануление решают одну и ту же задачу обеспечения безопасности человека

Таким образом, защитное заземление и зануление для электроустановок, как системы, решают одну и ту же задачу обеспечения безопасности человека, но каждая по-своему (смотрите фото выше).

В первом случае для организации цепочки стекания аварийного тока применяется местное заземляющее устройство, снижающее высокий потенциал на корпусе оборудования до безопасного уровня. При обустройстве системы зануления используется нейтраль питающей сети, позволяющая превратить аварийную ситуацию в обычное однофазное замыкание.

Областью применения защитных занулений являются все случаи, когда невозможно применить обычную систему заземления.

Назначение и принцип работы защитного заземления

Уже отмечалось, что система электрического заземления предназначена для защиты персонала, обслуживающего электроустановки и рядовых пользователей от высокого напряжения.

Опасный потенциал чаще всего попадает на металлические части оборудования или бытовых приборов совершенно случайно (из-за повреждения изоляции, например).

Назначение и сам принцип действия ЗУ проще понять, если вспомнить о том, что надежный контакт с землей приводит к растеканию опасного тока и снижению уровня потенциала.

Таким образом, назначение защитного устройства – создать условия, уменьшающие риск поражению живых организмов током опасной величины за счет снижения напряжения в точке замыкания.

Принцип действия системы заземления заключается в снижении высокого потенциала, случайно оказавшегося на корпусе оборудования, до безопасного для организма человека значения.

В отсутствие функционального заземления неумышленное прикосновение к нему равносильно непосредственному контакту с фазной жилой.

С учетом того, что оператор чаще всего стоит на железобетонном полу, а обувь у него не всегда сухая – через его тело может протекать значительный по величине ток.

Наличие защитного заземления создает условия для того, чтобы основная часть тока с системы стекала в землю

Наличие функционального заземления создает условия для того, чтобы основная часть тока с системы стекала в землю. Его доля, приходящаяся на организм человека, будет ничтожно мала и не причинит ему никакого вреда (смотрите фото слева). Это гарантирует требуемый уровень электробезопасности при работе с заземляемым устройством.

Дополнительная информация: Системы заземления наряду с уже известным нам техническим занулением – не единственные варианты обеспечения безопасности при эксплуатации электроустановок.

Наряду с ними ПУЭ рекомендуются к применению специальные устройства аварийного отключения питающей линии (УЗО), срабатывающие при появлении утечек на землю.

Как рассчитать систему заземляющих элементов

Знакомство с порядком расчета заземления следует начать с выяснения того, какую величину принимать за определяющий показатель и для какой цели применяется сама процедура. Этим параметром является сопротивление защитного контура, зависящее от таких технических показателей, как:

  • Габариты и форма заземляющей системы.
  • Глубина ее погружения в землю.
  • Состояние грунта в данной местности.

Важно: Большой «вклад» в формирование проводимости цепочки стекания тока вносит переходное сопротивление контактов в конструкции самого ЗУ.

Известно, что контур искусственного заземления состоит из комплекта вертикальных и горизонтальных металлических элементов и медной соединяющей их шины. С целью обеспечения минимального сопротивления стеканию тока в землю необходимо:

  1. использовать заземляющие системы с большой площадью контакта с грунтом (при необходимости – увеличить количество вертикальных штырей и их шаг);
  2. постоянно следить за состоянием почвы в месте расположения устройства и уметь определять удельное сопротивление грунта;
  3. контролировать надежность сварных соединений.

Для оценки реальных показателей эффективности ЗУ необходимо ознакомиться с существующими методиками измерения проводимости заземляющей системы.

Типовые методики расчета

Для расчета защитного заземления потребуется заранее определиться со следующими исходными показателями:

  • Размеры и общее число вбитых в грунт штырей из стали.
  • Расстояние, оставляемое между ними (шаг установки).
  • Глубина заложения прутьев.
  • Удельное сопротивление самой почвы в месте обустройства ЗУ.

Помимо них важно учитывать геометрическую форму и материал заготовок, из которых сваривается система из заземлителей (либо это типовой стальной уголок, либо медная полоса и тому подобное).

Согласно действующей нормативной документации (ПУЭ, в частности) минимальные размеры выбранных заготовок должны быть не менее:

  1. полоса стальная с сечением не менее 100 мм2;
  2. стальной уголок со сторонами 4х4 мм;
  3. круглый стальной брусок сечением 16 мм2;
  4. металлическая труба диаметром 32 мм и толщиной стенки не менее 3,5 мм.

Минимальные размеры штырей или арматурных прутьев, используемых для изготовления системы ЗУ, выбирается из следующих соображений. Длина заготовок не может быть менее 1,5-2 метра. Расстояния между ними берется кратным длине каждого стержня.

В зависимости от того, какая площадка выбирается для обустройства ЗУ, они устанавливаются либо в ряд один за другим, либо в виде квадрата или правильного треугольника.

Согласно применяемой методике расчета основная его задача – определиться с числом стержней и параметрами соединяющей из полосы (ее длиной и толщиной).

Для расчета всех параметров защитного заземления Вы можете воспользоваться онлайн калькулятором на нашем сайте.

Пример расчета элементов ЗУ

В качестве примера рассмотрим расчет сопротивления стеканию аварийного тока для вертикального стержня, взятого в единственном экземпляре (чертеж справа).

Чертеж вертикального заземлителя

Для его проведения потребуется знать следующие исходные данные:

ρ – удельное сопротивление грунта в этом месте (в Омах на·метр);

L – длина стержня в метрах;

d – его основной типоразмер (диаметр) в метрах;

Т – расстояние до середины прутка от поверхности в метрах.

Если учитывать величину, ограничивающую растекание тока для горизонтальных элементов ЗУ, то сопротивление для их вертикальных аналогов вычисляется по следующей формуле:

Формула расчета сопротивления растеканию тока для вертикальных заземлителей

В ситуации, когда заземляющее устройство обустраивается в неоднородном грунте (специалисты называют его двухслойным), удельное сопротивление рассчитывается так:

Формула расчета удельного сопротивления для неоднородного грунта

где – Ψ представляет собой сезонный коэффициент;

ρ1 и ρ2– удельные сопротивления различных слоев местного грунта (верхнего уровня и нижнего слоя соответственно), измеренные в Омах на·метр;

Н – толщина слоя, расположенного в верхней части грунта в метрах;

t – общее заглубление вертикальных элементов (глубина всей траншеи), равное примерно 0,7 метра.

Нужное число стержней (без учета горизонтальных компонентов) определяется следующим образом:

где представляет собой нормируемое согласно ПТЭЭП сопротивление растеканию.

Если учитывать горизонтальные составляющие ЗУ, то формула для числа вертикальных штырей примет следующий вид:

где ηв – это коэффициент использования системы, указывающий на то, насколько сильно токи растекания от единичных элементов влияют друг на друга (при их различном расположении).

Дополнительная информация: При параллельном размещении системы из прутьев взаимное влияние токов растекания единичных штырей проявляется значительно сильнее.

Именно поэтому при слишком близком их расположении общее сопротивление защитного контура существенно возрастает.

Полученное после использование указанных формул число заземляющих элементов обычно округляется до большего значения.

Расчет заземления по ним удается автоматизировать, если воспользоваться специально разработанной для этих целей программой «Электрик v.6.6». Скачать это ПО можно бесплатно на соответствующем сайте в Интернете.

Отличие рабочего заземляющего провода от защитной шины

Рабочий и защитный заземляющие проводники отличаются один от другого, прежде всего, своим назначением. Первый из них служит целям обеспечения нагрузки фазным током, создавая цепь для его протекания от трансформатора к потребителю. Второй же используется целенаправленно для обустройства систем заземления (как на станционной стороне, так и у потребителя).

Обратите внимание: На производстве или в частных домах, например, заземляющая жила используется для организации так называемого «местного» или повторного заземления.

Таким образом, основное функциональное назначение рабочей шины – создание условий для бесперебойной работы станционного и местного электрооборудования за счет прокладки отдельной от защитного проводника линии.

Система заземления функционально решает совсем иные задачи – она создает условия для безопасного режима эксплуатации этого оборудования. Кроме того, к ней подключаются установленные на предприятиях или в частных домах молниеотводы.

Она же используется при необходимости создания систем заземления и уравнивания потенциалов в электроустановках.

Принципиальная схема разделения PEN проводника на PE и N

Чтобы не путать эти два типа заземляющих проводников на электрических схемах – специально введены буквенные и цветовые обозначения, указывающие на способ их монтажа (совмещенный или раздельный).

В первом случае общий провод обозначается как PEN, а при раздельной прокладке они функционально разделены на PE защитный и на N, нулевой или рабочий (фото слева).

В зависимости от способа оформления этих двух проводников различают несколько видов систем заземления, допустимых к применению в российских питающих сетях.

Требования, контроль, проверка

При обустройстве и эксплуатации систем заземления организации контроля их состояния уделяется повышенной внимание. Перед проведением этих мероприятий в первую очередь необходимо ознакомиться с содержанием терминов, используемых для описания процедур. Под «проверкой» понимается визуальное обследование систем заземления на соответствие следующим требованиям:

  1. надежность контактов в местах сочленения элементов ЗУ;
  2. отсутствие следов разрушения на открытых частях конструкций и подводящих медных шин;
  3. состояние защитной окраски, которую рекомендуется регулярно обновлять, а также наличие маркировки на подводящих проводниках.

Под словом «контроль» понимают периодические испытания заземляющих контуров с целью выявления соответствия их сопротивлений стеканию тока установленным ПУЭ нормам. Согласно требованиям этого документа оно не должно превышать нескольких единиц Ома.

Дополнительная информация: Для контроля состояния заземления потребуются измерительные приборы, подключаемые к конструктивным элементам по специальной схеме.

Согласно требованиям ПУЭ действующие ЗУ должны проверяться не реже чем один раз в полгода (визуальный осмотр).

Та же процедура, сопровождающаяся выборочным вскрытием земляного покрова в подозрительных местах, проводится не реже одного раза за 12 лет.

При организации контроля исправности и надежности функционирования систем ЗУ также исходят из рекомендаций ПУЭ, определяющих какие напряжения не требуется применять при проверке сопротивления контура, а какие – можно.

Кроме того, типовые методики проводимых периодически контрольных обследований предполагают обязательное измерение сопротивления электрического контура, называемого «петлей фаза-нуль». Эта искусственно создаваемая система формируется путем замыкания отдельно взятого фазного провода на металлический корпус подключенной к действующей сети электроустановки.

По сути, такая петля образуется между фазной шиной и заземленным нулем, что и стало поводом для присвоения ей такого названия.

Знание этого параметра позволяет точнее контролировать цепи заземления с целью обеспечения требуемой эффективности защиты (стекания аварийного тока в грунт).

От величины сопротивления этого контура зависит безопасность обслуживающего персонала и работающих с бытовыми приборами людей.

Как определить сопротивление петли «фаза-нуль»

Требования, содержащиеся в правилах ПТЭЭП, предписывают постоянный контроль состояния ЗУ, обеспечивающих безопасность эксплуатации бытового и промышленного электрооборудования.

Согласно этим нормативам в системах до 1000 Вольт с заземленной наглухо нейтралью они обязательно проверяются на одиночное фазное замыкание.

Используемые методики испытаний, прежде всего, опираются на техническую базу, представленную образцами измерительных приборов специального назначения.

Измерительная аппаратура

Для проверки сопротивления контурной цепочки замыкания «фаза нуль» традиционно применяются электронные приборы, отличающиеся малой погрешностью измерений. К наиболее известным образцам измерительной техники этого класса относят:

  • Измерители марок М 417 и MSC 300, позволяющие определять проводимость контролируемых цепей (на основании полученных результатов токи КЗ в грунт вычисляются по специальным формулам).
  • Прибор ЭКО-200, предназначенный исключительно для определения токов КЗ. Устройство ЭКЗ-01, используемое точно так же как и ЭКО-200.
  • Измерительный прибор марки ИФН-200.

М417 допускается применять при организации и проведении измерений в трехфазных цепях с заземленным наглухо нулем (в этом случае снятия питающего напряжения не требуется).

В ходе испытаний используется метод падения напряжения при размыкании контролируемой цепи на время порядка 0,3 секунды.

К неудобствам работы с этим прибором относят обязательность его калибровки перед началом каждого нового измерения.

Измеритель сопротивления цепи фаза-нуль марки М 417

Изделие MSC300 – это более совершенное техническое устройство, оснащенное сложной электронной начинкой в виде современных микропроцессорных чипов. При работе с этим прибором применяется метод снижения потенциала при включении в измеряемую цепь сопротивления величиной 10 Ом.

Рабочее напряжение варьируется в границах от 180 до 250 Вольт, а время замера искомого параметра составляет около 0,03 секунды. При проведении замеров он подсоединяется к контролируемой линии в самой удаленной точке, а для начала работы с ним потребуется нажать кнопку «Старт».

С результатами измерений можно ознакомиться после вывода их на встроенный цифровой дисплей.

MZC-300 измеритель параметров сетей электропитания зданий и сооружений

В ситуации, когда в распоряжении пользователя не оказалось ни одного образца специальной измерительной техники – для практического определения сопротивления петли «фаза-нуль» могут применяться типовые вольтметр и амперметр. Требуемый результат находится по простейшей формуле, знакомой многим еще по школьному курсу физики.

Выводы

В заключительной части обзора отметим, что областью применения систем защитного заземления являются все электрическое оборудование, работающее как на стороне потребителя, так и в границах трансформаторной подстанции.

Эти устройства характеризуются тем, что обеспечивают условия для безопасной работы обслуживающего персонала (защищают его от удара электрическим током).

После знакомства с особенностями их обустройства и расчета ни у одного пользователя не должно остаться сомнений в том, для чего нужно заземление при эксплуатации электроустановок.

Источник: https://FishkiElektrika.ru/zaschitnoe-zazemlenie-i-zanulenie

Расчет защитного заземления и зануления

Расчет защитного заземления и зануления
и по ним наибольшего тока однофазного КЗ температура заземляющих проводников не превысила 400°С (кратковременный нагрев, соответствующий времени действия основной защиты и полного времени отключения выключателя).

В электроустановках до 1 кВ и выше с изолированной нейтралью проводимость заземляющих проводников должна составлять не менее 1/3 проводимости фазных проводников, а сечение не менее приведенных в табл. 1.

Не требуется применения медных проводников сечением более 25мм, алюминиевых 35мм, стальных 120мм. В производственных помещениях с такими электрическими магистралями заземления из стальной полосы должны иметь сечение не менее 100мм. Допускается применение круглой стали того же сечения.

Таблица 1. Наименьшие сечения заземляющих и нулевых защитных проводников

СтальНаименованиеМедьАлюминийв зданияхв наружных установкахв землеНеизолированные проводники:сечение, мм46—диаметр, мм—5610Изолированные провода:сечение, мм1,52,5—Заземляющие и нулевые жилы кабелей и многожильных проводов в общей защитной оболочке с фазными жилами: сечение, мм12,5—Угловая сталь: толщина полки, мм—22,54Полосовая сталь:сечение, мм—244848толщина, мм—344Водогазопроводные трубы (стальные): толщина стенки, мм—2,52,53,5Тонкостенные трубы (стальные): толщина стенки, мм—1,52,5Не допускается

В электроустановках до 1 кВ с глухозаземленной нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой защитный проводник возникал ток КЗ, превышающий не менее чем:

в 3 раза номинальный ток плавкого элемента ближайшего предохранителя;

в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (отсечку), проводимость указанных проводников должна обеспечивать ток не ниже уставки тока мгновенного срабатывания, умноженной на коэффициент, учитывающий разброс (по заводским данным), и на коэффициент запаса 1,1. При отсутствии заводских данных для автоматических выключателей с номинальным током до 100 А кратность тока КЗ относительно уставки следует принимать не менее 1,4, а для автоматических выключателей с номинальным током более 100 А не менее 1,25.

Полная проводимость нулевого защитного проводника во всех случаях должна быть не менее 50% проводимости фазного проводника.

В электроустановках до 1 кВ с глухозаземленной нейтралью в целях удовлетворения требований, нулевые защитные проводники рекомендуется прокладывать совместно или в непосредственной близости с фазными.

Использование металлических оболочек трубчатых проводов, несущих тросов при тросовой электропроводке, металлических оболочек изоляционных трубок, металлорукавов, а также брони и свинцовых оболочек проводов и кабелей в качестве заземляющих или нулевых защитных проводников запрещается. Использование для указанных целей свинцовых оболочек кабелей допускается лишь в реконструируемых городских электрических сетях 220/127 и 380/220 В.

3. Устройство защитного заземления и зануления

Как отмечалось, заземлением называется преднамеренное электрическое соединение данной точки системы или установки, или оборудования с локальной землей посредством заземляющего устройства.

Различают 3 вида заземлений

защитное, гарантирующее безопасное обслуживание электроустановок

рабочее, обеспечивающее нормальную работу электроустановок в выбранных режимах

грозозащитное, которое служит для защиты от атмосферных перенапряжений.

ПУЭ [4, глава 1.7] регламентирует следующие значения сопротивлений защитных заземляющих устройств.

Таблица 2. Допустимые сопротивления заземляющего устройства в электроустановках до и выше 1000 В

Наибольшие допустимые значения , ОмХарактеристика электроустановокДля электроустановок напряжением выше 1000 В и расчетным током замыкания на землю АДля электроустановок напряжением выше 1000 В и расчетным током замыкания на землю АПри условии, что заземляющее устройство является общим для электроустановок напряжением до и выше 1000 В и расчетном токе замыкания на землю АВ электроустановках напряжением 660/380 ВВ электроустановках напряжением 380/220 ВВ электроустановках напряжением 220/127 В

В качестве последнего, называемым заземлителем, используются различные устройства. Их условно можно разделить на естественные и искусственные. Отличие состоит в том, что устройство первых не требуется, так как они уже существуют независимо от заземляемой электроустановки.

В качестве естественных заземлителей рекомендуется использовать:

1) проложенные в земле водопроводные и другие металлические трубопроводы, за исключением трубопроводов горючих жидкостей, горючих или взрывчатых газов и смесей;

2) обсадные трубы скважин;

3) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей;

4) металлические шунты гидротехнических сооружений, водоводы, затворы и т.п.;

5) свинцовые оболочки кабелей, проложенных в земле. Алюминиевые оболочки кабелей не допускается использовать в качестве естественных заземлителей.

Если оболочки кабелей служат единственными заземлителями, то в расчете заземляющих устройств они должны учитываться при количестве кабелей не менее двух;

6) заземлители опор ВЛ, соединенные с заземляющим устройством электроустановки при помощи грозозащитного троса ВЛ, если трос не изолирован от опор ВЛ;

7) нулевые провода ВЛ до 1 кВ с повторными заземлителями при количестве ВЛ не менее двух;

8) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами.

Заземлители должны быть связаны с магистралями заземлений не менее чем двумя проводниками, присоединенными к заземлителю в разных местах. Это требование не распространяется на опоры ВЛ., повторное заземление нулевого провода и металлические оболочки кабелей.

В качестве естественных заземлителей недопустимо использование теплотрасс, трубопроводов с горючими веществами такими как бензин, природным газом, нефтью и др.

Использование естественных заземлителей уменьшает капиталовложения в установки, упрощает монтаж оборудования и тд.

Если по определенным причинам, такими как: невозможность использования естественных заземлителей, для повышения надёжности заземления, используют искусственные заземлители.

стальные трубы от 2м с толщиной стенки от 3.5мм

полосовую или угловую сталь толщиной не менее 4мм

прутковую сталь диаметром 10мм длиной 10 метров и более

Устройство защитного заземления

Применение защитного заземления чаще всего требуется на РУ подстанций. Для этого по контуру подстанции вбиваются в землю вертикальные электроды. В их качестве выступают чаще всего стальные стержни. Затем они опоясываются горизонтальным заземлителем, в качестве которого служит стальная полоса. Способ соединения их сварка.

Места соединения рекомендуется проливать битумом для уменьшения коррозии. При необходимости число вертикальных электродов, равно как и горизонтальных увеличивают. Это определяется в результате расчета (см. п 5.1), который сводится к определению сопротивления растеканию тока заземлителя.

Оно зависит от проводимости грунта, конструкции заземлителя и глубины его заложения. Проводимость грунта характеризуется его удельным сопротивлением сопротивлением между противоположными сторонами кубика грунта со стороной 1см. Оно зависит от характера и строения грунта, его влажности, глубины промерзания.

Так при промерзании грунта его удельное сопротивление возрастает.

При устройстве заземления на подстанции также необходимо обратить внимание и на устройство входа и въезда в подстанцию. Здесь нужно закладывать две-три стальные полосы в форме козырька с постепенным заглублением на 1,52м, чем достигается снижение напряжения шага.

В местах перекрещивания заземляющих проводников с кабелями, трубопроводами, железнодорожными путями, в местах их ввода в здания и в других местах, где возможны механические повреждения заземляющих защитных проводников, эти проводники должны быть защищены. [1, с.

102]

Устройство зануления.

Применение данной защиты требуется чаще всего помещениях с большим количеством электроприемников, так как заземление на месте каждого из них бывает невозможным в силу объективных причин. Для этого, например в цехе [3, с.

155], прокладываются магистральные защитные проводники из полосовой стали, сечение которой указано ранее. В наружных установках заземляющие и нулевые защитные проводники допускается прокладывать в земле, в полу или по краю площадок, фундаментов технологических установок и т.п.

Затем зануляемые части приемников подключаются к магистрали. Ответвления от магистралей к электроприемникам до 1 кВ допускается прокладывать скрыто непосредственно в стене, под чистым полом и т.п. с защитой их от воздействия агрессивных сред.

Такие ответвления не должны иметь соединений. Способ прокладки их зависит от помещения в котором они выполняются.

В помещениях сухих, без агрессивной среды, заземляющие и нулевые защитные проводники допускается прокладывать непосредственно по стенам.

Во влажных, сырых и особо сырых помещениях и в помещениях с агрессивной средой заземляющие и нулевые защитные проводники следует прокладывать на расстоянии от стен не менее чем 10мм.

Сама магистраль выводится к месту устройства заземления.

Не допускается использовать в качестве нулевых защитных проводников нулевые рабочие проводники, идущие к переносным электроприемникам однофаз

Источник: https://www.studsell.com/view/145815/?page=2

Защитное зануление: принцип действия, расчет, отличие от заземления

Расчет защитного заземления и зануления

Открытие электрического тока ознаменовало новую эру в развитие человечества. В настоящее время невозможно представить комфортное существование человека без этого энергоносителя. Без электричества невозможно представить работу промышленных предприятий, строительных организаций, транспорта и так далее.

Да и просто жизнь людей скатилась бы без него к средневековому уровню. Но этот вид энергии является надежным слугой человечества, только в том случае, если она будет находиться под неусыпным контролем.

Но если этот контроль ослабить, то электричество станет неуправляемой стихией и может нанести огромный вред как человеку, так и материальным ценностям.

Движение электронов в электрической сети идет по пути минимального сопротивления и если не предпринимать защитных мер, то электрический ток может нанести человеку серьезное поражение, вплоть до летального исхода.

К тому же, в критических ситуациях электрическая энергия способна воспламенить горючие вещества, что неминуемо приведет к возникновению пожара.

Чтобы избежать этих негативных последствий предпринимаются различные меры обеспечения безопасности: автоматические системы обесточивания сети, защитное зануление и заземление. В этой статье мы расскажем, что называется занулением и как такая защита функционирует.

Зануление и его особенности

Ответить на вопрос, что такое защитное зануление, довольно просто, но необходимо знать чем оно отличается от заземления электрооборудования. Точное понимание этих различий позволит избежать многих ошибок при монтаже бытовой техники, различных приборов, станков и другого оборудования, работающего на электрической энергии.

Защитное зануление — это подключение металлических корпусов и других деталей промышленного оборудования и различной бытовой техники, которые в рабочем состоянии не должны находиться под сетевым напряжением, к нейтральному (нулевому) проводу системы подачи электроэнергии. Этот провод в какой-то точке должен быть наглухо заземлен.

Важно! Не путайте нейтральный (нулевой) защитный провод с нулевым проводом питающей сети. Это совершенно разные проводники. Для сетей с трехфазной подачей электроэнергии — это нейтральный провод, идущий от силового трансформаторной подстанции или устройства, генерирующего электрическую энергию, для однофазных сетей — это наглухо заземленный провод.

Для чего необходимо занулять некоторые типы бытового и промышленного оборудования? Все очень просто! Главной целью зануления является обеспечение защиты человека от поражения электрическим током в случае КЗ (короткого замыкания) фазы сети на корпус и другие токопроводящие части электрооборудования.

Принцип действия зануления

Принцип действия зануления заключается в следующем процессе. Допустим, фаза питающей сети попала на корпус электрооборудования, что часто происходит в результате пробоя изоляции или других форс-мажорных обстоятельствах.

В этом случае, если токопроводящие части устройства имеют защитное зануление, возникает короткое замыкание, при этом величина электрического тока мгновенно достигает максимальных значений и срабатывает автоматическая защита или выгорает предохранитель.

Бытовая техника или другое оборудование обесточивается, что защищает человека от поражения электричеством и препятствует возникновению других негативных последствий.

Для того чтобы зануление сработало, нейтральный проводник должен иметь очень низкое значение сопротивления электрическому току. Только в этом случае ток КЗ будет максимальным, что обеспечит срабатывание защитных систем сети.

Благодаря тому, что нейтраль имеет полное заземление на генераторе или трансформаторе, защитное зануление обеспечивает очень низкое напряжение на корпусе электрооборудования при прикосновении к нему.

По большому счету, защитное зануление — это одна из разновидностей заземления, выполненная с соблюдением определенных правил и норм.

Внимание! Простое заземление электрооборудования не всегда способно обеспечить срабатывание защитных систем сети, так как величины тока КЗ может не хватить для этого. Это значение должно быть максимальным!

Системы и схемы зануления

Существует несколько вариантов выполнения защиты электрооборудования путем зануления металлического корпуса устройства. В этой статье мы рассмотрим два следующих основных способа зануления любой техники, подключенных к трехфазной и однофазной сети подачи электроэнергии.

  1. Трехфазная сеть.

    Для такого подключения схема довольно проста и выполнить ее не составит труда любому человеку знакомому с основами электротехники. В этом варианте нулевой провод N и защитная линия PE объединены в одну общую шину под названием PEN. Такой метод зануления получил наименование системы TN-C.

    Для его реализации необходимо строго соблюдать повышенные требования к уравниванию электрических потенциалов, а также к площади сечения объединенного проводника PEN. Для сетей с подачей электроэнергии по однофазной схеме использование системы TN-C категорически запрещено правилами устройства электроустановок (ПУЭ).

  2. Однофазная сеть.

    Для реализации защитного зануления в однофазных сетях существует способ по системе TN-C-S. При этом методе проводник N объединяется с линией PE только на ограниченном участке сети подачи электроэнергии, начинающимся рядом с основным источником питания.

    Система TN-C-S хороша для однофазных сетей, но ее ни в коем случае нельзя применять при занулении электрооборудования, работающего в трехфазных сетях электрификации.

Любая система защитного зануления может быть использована только в сетях как однофазных, так и трехфазных, с переменным напряжением не более 1 кВ, к тому же сеть в обязательном порядке должна иметь наглухо заземленную нейтраль.

После выполнения работ по защите электрооборудования необходимо выполнить проверку и расчет системы зануления, который следует доверить только специалисту, так как эта процедура предполагает использование специальных приборов.

В результате произведенных замеров определяется сопротивление петли нейтраль-фаза, которое должно иметь минимальное значение.

После этого, согласно закону Ома, по которому I=U/R, вычисляется ток КЗ (короткого замыкания) при попадании фазы сети на металлический корпус прибора.

Значение этого параметра должно быть на некоторую величину больше, чем порог срабатывания автоматических систем обесточивания электроразводки.

В противном случае их нужно менять на устройства с меньшим значением порога срабатывания или выполнять мероприятия по снижению величины сопротивления петли нейтраль-фаза. При расчете тока КЗ следует применять увеличивающий коэффициент надежности Кн, который всегда больше единицы.

Особенности зануления в квартире

У потребителя часто возникает вопрос: что необходимо занулять в квартире, а чего делать не следует? Коротко ответим на этот вопрос. Сначала расскажем чего делать не следует. Зануление в квартире не рекомендуется использовать для изделий, которые заземлены через трубы.

К ним относятся металлические ванны, умывальники, смесители и другие предметы, связанные с землей через стальные трубы. В случае зануления этих изделий можно получить поражение электрическим током при включении бытовой техники.

Выравнивать потенциалы металлических предметов на кухне, в ванной и туалете следует используя заземление.

Все бытовые приборы в квартире необходимо занулять. В новых домах эта проблема, как правило, решена, так как нейтраль уже подведена к розеткам, а все современные бытовые приборы имеют вилку с заземляющим контактом.

В старых домах электропроводка выполнена по двухпроводной схеме.

В этом случае для зануления бытовой техники необходимо завести отдельный провод от квартирного электрического щитка, что позволит занулить оборудование через розетки.

Важно! Зануление бытовой техники в квартире необходимо выполнять с соблюдением правил электробезопасности. Работы следует проводить на полностью обесточенном оборудовании!

Когда следует использовать зануление, а когда заземление

В этой части статьи мы ответим на вопрос в чем разница между заземлением и занулением и в каком случае использовать тот или иной метод защиты человека от поражения электрическим током. Принцип действия защитного зануления похож на функциональные возможности заземления, но между ними есть существенная разница!

Обе системы предназначены для защиты человека от поражения электричеством. Разница между ними в том, что зануление мгновенно обесточивает оборудование, а заземление отводит опасный электрический ток в землю. Вот в этом и заключается вся разница! На ниже приведенной схеме наглядно показаны различия между этими двумя способами.

Какой же метод лучше использовать в каждом конкретном случае? Однозначно ответить на этот вопрос невозможно. Например, в многоэтажных домах создание заземляющего контура — это трудное и затратное мероприятие.

Поэтому в большинстве квартир используется защитное зануление, подключаемое к бытовой технике через электрические розетки. В частном доме монтаж заземляющего контура не вызовет затруднений.

Каждая из систем защиты следующие преимущества и недостатки.

  1. Заземление в частном доме можно сделать собственными руками, а для зануления необходимы познания в электротехнике, с проведением расчетов и выбора оптимального варианта подключения к нейтральному проводу системы электроснабжения. К тому же зануление перестает работать при обрыве нулевого провода.
  2. В многоэтажных домах устройство контура заземления является сложной задачей, так как необходимо будет выполнить комплекс монтажных работ высокой стоимости. Для квартир  в основном используется принцип зануления бытовых приборов, хотя этому способу защиты человека от поражения электрическим током присущи определенные недостатки.

Исходя из всего вышесказанного следует сделать вывод, что для частного дома лучше выбирать заземление, а для квартиры зануление. Правда, в том случае если объект запитывается от однофазной двухпроводной линии, что характерно для дачных поселков, без контура заземления не обойтись!

Важно! Часто в специальной литературе можно встретить такой термин, как защитное заземление по системе TN-C-S и TN-C. Следует сказать, что это не прямое заземление через специально смонтированный контур, а все то же защитное зануление!

Заключение

Надеемся, что статья помогла вам понять, что такое зануление и заземление, как эти две системы защиты человека от поражения электрическим током работают и какую из них лучше использовать в частном доме, квартире или на даче!

по теме

Источник: https://ProFazu.ru/provodka/bezopasnost-provodka/zashhitnoe-zanulenie.html

Refy-free
Добавить комментарий