Определенный интеграл

Калькулятор онлайн.Вычислить определенный интеграл (площадь криволинейной трапеции)

Определенный интеграл

Этот математический калькулятор онлайн поможет вам вычислить определенный интеграл (площадь криволинейной трапеции). Программа для вычисления определенного интеграла (площади криволинейной трапеции) не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс интегрирования функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.

А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о определенном интеграле.

Примеры подробного решения >>

Введите подинтегральную функцию и пределы интегрирования Вычислить Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать. Возможно у вас включен AdBlock.

В этом случае отключите его и обновите страницу.

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь. Через несколько секунд решение появится ниже.

Пожалуйста подождите  сек…

Наши игры, головоломки, эмуляторы: Игра «iChart»Создание островаЭмулятор
гравитацииГоловоломка «SumWaves»

Задача 1 (о вычислении площади криволинейной трапеции).

В декартовой прямоугольной системе координат xOy дана фигура (см. рисунок), ограниченная осью х, прямыми х = a, х = b (a < b) и графиком непрерывной и неотрицательной на отрезке [а; b] функции y = f(x); назовем эту фигуру криволинейной трапецией.

Требуется вычислить площадь криволинейной трапеции.
Решение. Геометрия дает нам рецепты для вычисления площадей многоугольников и некоторых частей круга (сектора, сегмента).

Используя геометрические соображения, мы сумеем найти лишь приближенное значение искомой площади, рассуждая следующим образом.

Разобьем отрезок [а; b] (основание криволинейной трапеции) на n равных частей; это разбиение осуществим с помощью точек x1, x2, … xk, … xn-1. Проведем через эти точки прямые, параллельные оси у. Тогда заданная криволинейная трапеция разобьется на n частей, на n узеньких столбиков. Площадь всей трапеции равна сумме площадей столбиков.

Рассмотрим отдельно k-ый столбик, т.е. криволинейную трапецию, основанием которой служит отрезок [xk; xk+1]. Заменим его прямоугольником с тем же основанием и высотой, равной f(xk) (см. рисунок).

Площадь прямоугольника равна \( f(x_k) \cdot \Delta x_k \), где \( \Delta x_k \) — длина отрезка [xk; xk+1]; естественно считать составленное произведение приближенным значением площади k-го столбика.

Если теперь сделать то же самое со всеми остальными столбиками, то придем к следующему результату: площадь S заданной криволинейной трапеции приближенно равна площади Sn ступенчатой фигуры, составленной из n прямоугольников (см. рисунок): \( S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_{n-1})\Delta x_{n-1} \)

Здесь ради единообразия обозначений мы считаем, что a = х0, b = xn; \( \Delta x_0 \) — длина отрезка [x0; x1], \( \Delta x_1 \) — длина отрезка [x1; x2], и т.д; при этом, как мы условились выше, \( \Delta x_0 = \dots = \Delta x_{n-1} \)

Итак, \( S \approx S_n \), причем это приближенное равенство тем точнее, чем больше n.
По определению полагают, что искомая площадь криволинейной трапеции равна пределу последовательности (Sn):
$$ S = \lim_{n \to \infty} S_n $$

Задача 2 (о перемещении точки) По прямой движется материальная точка. Зависимость скорости от времени выражается формулой v = v(t). Найти перемещение точки за промежуток времени [а; b].

Решение. Если бы движение было равномерным, то задача решалась бы очень просто: s = vt, т.е. s = v(b-а). Для неравномерного движения приходится использовать те же идеи, на которых было основано решение предыдущей задачи.

1) Разделим промежуток времени [а; b] на n равных частей.

2) Рассмотрим промежуток времени [tk; tk+1] и будем считать, что в этот промежуток времени скорость была постоянной, такой, как в момент времени tk. Итак, мы считаем, что v = v(tk).

3) Найдем приближенное значение перемещения точки за промежуток времени [tk; tk+1], это приближенное значение обозначим sk \( s_k = v(t_k) \Delta t_k \) 4) Найдем приближенное значение перемещения s: \( s \approx S_n \) где \( S_n = s_0 + \dots + s_{n-1} = v(t_0)\Delta t_0 + \dots + v(t_{n-1}) \Delta t_{n-1} \)

5) Искомое перемещение равно пределу последовательности (Sn):

$$ s = \lim_{n \to \infty} S_n $$

Подведем итоги. Решения различных задач свелись к одной и той же математической модели. Многие задачи из различных областей науки и техники приводят в процессе решения к такой же модели. Значит, данную математическую модель надо специально изучить.

Дадим математическое описание той модели, которая была построена в трех рассмотренных задачах для функции y = f(x), непрерывной (но необязательно неотрицательной, как это предполагалось в рассмотренных задачах) на отрезке [а; b]: 1) разбиваем отрезок [а; b] на n равных частей; 2) составляем сумму $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_{n-1})\Delta x_{n-1} $$

3) вычисляем $$ \lim_{n \to \infty} S_n $$

В курсе математического анализа доказано, что этот предел в случае непрерывной (или кусочно-непрерывной) функции существует. Его называют определенным интегралом от функции y = f(x) по отрезку [а; b] и обозначают так: \( \int\limits_ab f(x) dx \)

Числа a и b называют пределами интегрирования (соответственно нижним и верхним).

Вернемся к рассмотренным выше задачам. Определение площади, данное в задаче 1, теперь можно переписать следующим образом: \( S = \int\limits_ab f(x) dx \)

здесь S — площадь криволинейной трапеции, изображенной на рисунке выше. В этом состоит геометрический смысл определенного интеграла.

Определение перемещения s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = a до t = b, данное в задаче 2, можно переписать так:
\( S = \int\limits_ab v(t) dt \)

Для начала ответим на вопрос: какая связь между определенным интегралом и первообразной?

Ответ можно найти в задаче 2. С одной стороны, перемещение s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = а до t = b и вычисляется по формуле
\( S = \int\limits_ab v(t) dt \)

С другой стороны, координата движущейся точки есть первообразная для скорости — обозначим ее s(t); значит, перемещение s выражается формулой s = s(b) — s(a). В итоге получаем: \( S = \int\limits_ab v(t) dt = s(b)-s(a) \)

где s(t) — первообразная для v(t).

В курсе математического анализа доказана следующая теорема.
Теорема. Если функция y = f(x) непрерывна на отрезке [а; b], то справедлива формула \( S = \int\limits_ab f(x) dx = F(b)-F(a) \)

где F(x) — первообразная для f(x).

Приведенную формулу обычно называют формулой Ньютона — Лейбница в честь английского физика Исаака Ньютона (1643—1727) и немецкого философа Готфрида Лейбница (1646— 1716), получивших ее независимо друг от друга и практически одновременно.

На практике вместо записи F(b) — F(a) используют запись \( \left. F(x)\right|_ab \) (ее называют иногда двойной подстановкой) и, соответственно, переписывают формулу Ньютона — Лейбница в таком виде:
\( S = \int\limits_ab f(x) dx = \left. F(x)\right|_ab \)

Вычисляя определенный интеграл, сначала находят первообразную, а затем осуществляют двойную подстановку.

Опираясь на формулу Ньютона — Лейбница, можно получить два свойства определенного интеграла.

Свойство 1. Интеграл от суммы функций равен сумме интегралов:
\( \int\limits_ab (f(x) + g(x))dx = \int\limits_ab f(x)dx + \int\limits_ab g(x)dx \)

Свойство 2. Постоянный множитель можно вынести за знак интеграла:
\( \int\limits_ab kf(x)dx = k \int\limits_ab f(x)dx \)

С помощью интеграла можно вычислять площади не только криволинейных трапеций, но и плоских фигур более сложного вида, например такого, который представлен на рисунке.

Фигура Р ограничена прямыми х = а, х = b и графиками непрерывных функций y = f(x), y = g(x), причем на отрезке [а; b] выполняется неравенство \( g(x) \leq f(x) \).

Чтобы вычислить площадь S такой фигуры, будем действовать следующим образом: \( S = S_{ABCD} = S_{aDCb} — S_{aABb} = \int\limits_ab f(x) dx — \int\limits_ab g(x) dx = \)

\( = \int\limits_ab (f(x)-g(x))dx \)

Итак, площадь S фигуры, ограниченной прямыми х = а, х = b и графиками функций y = f(x), y = g(x), непрерывных на отрезке [a; b] и таких, что для любого x из отрезка [а; b] выполняется неравенство \( g(x) \leq f(x) \), вычисляется по формуле
\( S = \int\limits_ab (f(x)-g(x))dx \) $$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int xn dx = \frac{x{n+1}}{n+1} +C \;\; (n eq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int ex dx = ex +C $$ $$ \int ax dx = \frac{ax}{\ln a} +C \;\; (a>0, \;\; a eq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Источник: https://www.math-solution.ru/math-task/definite-integral

Определённый интеграл и методы его вычисления

Определенный интеграл

В каждой главе будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие определённого интеграла и формула Ньютона-Лейбница

Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись

Как видно на графиках внизу (приращение первообразной функции обозначено ), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F(b) — F(a)).

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования.

Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению,

            (38)

Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

                   (39)

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) = F(x) + C. Поэтому

Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают.

Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается.

Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b, далее — значение нижнего предела a и вычисляется разность F(b) — F(a).

Полученное число и будет определённым интегралом..

При a = b по определению принимается

Пример 1. Вычислить определённый интеграл

Решение. Сначала найдём неопределённый интеграл:

Применяя формулу Ньютона-Лейбница к первообразной

(при С = 0), получим

Однако при вычислении определённого интеграла лучше не находить отдельно первообразную, а сразу записывать интеграл в виде (39).

Пример 2. Вычислить определённый интеграл

Решение. Используя формулу

получим

Найти определённый интеграл самостоятельно, а затем посмотреть решение

Пример 3. Найти определённый интеграл

.

Правильное решение и ответ.

Пример 4. Найти определённый интеграл

.

Правильное решение и ответ.

Свойства определённого интеграла

Теорема 1. Определённый интеграл с одинаковыми пределами интегрирования равен нулю, т.е.

Это свойство содержится в самом определении определённого интеграла. Однако его можно получить и по формуле Ньютона-Лейбница:

Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования, т.е.

                         (40)

Пусть F(x) – первообразная для f(x). Для f(t) первообразной служит та же функция F(t), в которой лишь иначе обозначена независимая переменная. Следовательно,

На основании формулы (39) последнее равенство означает равенство интегралов

и

Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла, т.е.

                    (41)       

Теорема 4. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций, т.е.

            (42)

Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям, т.е. если

то

                  (43)

Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак, т.е.

                 (44)

Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его, т.е.

   (45)

Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если

Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство

можно почленно интегрировать, т.е.

             (46)

Свойства определённого интеграла позволяют упрощать непосредственное вычисление интегралов.

Пример 5. Вычислить определённый интеграл

Используя теоремы 4 и 3, а при нахождении первообразных – табличные интегралы (7) и (6), получим

Определённый интеграл с переменным верхним пределом

Пусть f(x) – непрерывная на отрезке [a, b] функция, а F(x) – её первообразная. Рассмотрим определённый интеграл

                (47)

где

,

а через t  обозначена переменная интегрирования, чтобы не путать её с верхней границей. При изменении х меняется и опредёленный интеграл (47), т.е. он является функцией верхнего предела интегрирования х, которую обозначим через Ф(х), т.е.

                       (48)

Докажем, что функция Ф(х) является первообразной для f(x) = f(t). Действительно, дифференцируя Ф(х), получим

так как F(x) – первообразная для f(x), а F(a) – постояная величина.

Функция Ф(х) – одна из бесконечного множества первообразных для f(x), а именно та, которая при x = aобращается в нуль. Это утверждение получается, если в равенстве (48) положить x = aи воспользоваться теоремой 1 предыдущего параграфа.

Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной

При выводе формулы интегрирования по частям было получено равенство u dv = d (uv) – v du. Проинтегрировав его в пределах от a до b и учитывая теорему 4 параграфа этой статьи о свойствах определённого интеграла, получим

Как это следует из теоремы 2 параграфа о свойствах неопределённого интеграла, первый член в правой части равен разности значений произведения uv при верхнем и нижнем пределах интегрирования. Записав эту разность кратко в виде

получаем формулу интегрирования по частям для вычисления определенного интеграла:

           (49)

Пример 6. Вычислить определённый интеграл

Решение. Интегрируем по частям, полагая u = ln x, dv = dx; тогда du = (1/x)dx, v = x. По формуле (49) находим

Найти определённый интеграл по частям самостоятельно, а затем посмотреть решение

Пример 7. Найти определённый интеграл

.

Правильное решение и ответ.

Пример 8. Найти определённый интеграл

.

Правильное решение и ответ.

Нет времени вникать в решение? Можно заказать работу!

Перейдём к вычислению определённого интеграла методом замены переменной. Пусть

где, по определению, F(x) – первообразная для f(x). Если в подынтегральном выражении произвести замену переменной

то в соответствии с формулой (16) можно записать

В этом выражении

первообразная функция для

В самом деле, её производная, согласно правилу дифференцирования сложной функции, равна

Пусть α и β – значения переменной t , при которых функция

принимает соответственно значения aи b, т.е.

Тогда

Но, согласно формуле Ньютона-Лейбница, разность F(b) – F(a) есть

поскольку F(x) – первообразная для f(x).

Итак,

           (50)

Это и есть формула перехода к новой переменной под знаком определённого интеграла. С её помощью определённый интеграл

после замены переменной

преобразуется в определённый интеграл относительно новой переменной t. При этом старые пределы интегрирования a и b заменяются новыми пределами и . Чтобы найти новые пределы, нужно в уравнение

поставить значения x = aи x = b, т.е. решить уравнения

и

относительно и . После нахождения новых пределов интегрирования вычисление определённого интеграла сводится к применению формулы Ньютона-Лейбница к интегралу от новой переменной t. В первообразной функции, которая получается в результате нахождения интеграла, возвращаться к старой переменной нет необходимости.

При вычислении определённого интеграла методом замены переменной часто бывает удобно выражать не старую переменную как функцию новой, а, наоборот, новую – как функцию старой.

Пример 9. Вычислить определённый интеграл

Решение. Произведём замену переменной, полагая

Тогда dt = 2x dx, откуда x dx = (1/2) dt, и подынтегральное выражение преобразуется так:

Найдём новые пределы интегрирования. Подстановка значений x = 4и x = 5в уравнение

даёт

а

Используя теперь формулу (50), получим

После замены переменной мы не возвращались к старой переменной, а применили формулу Ньютона-Лейбница к полученной первообразной.

Найти определённый интеграл заменой переменной самостоятельно, а затем посмотреть решение

Пример 10. Найти определённый интеграл

.

Правильное решение и ответ.

Пример 11. Найти определённый интеграл

.

Правильное решение и ответ.

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Интеграл

Начало темы «Интеграл»

Найти неопределённый интеграл: начала начал, примеры решений Метод замены переменной в неопределённом интеграле Интегрирование подведением под знак дифференциала Метод интегрирования по частям Интегрирование рациональных функций и метод неопределённых коэффициентов Интегрирование некоторых иррациональных функций Интегрирование тригонометрических функций

Продолжение темы «Интеграл»

Площадь плоской фигуры с помощью интеграла Объём тела вращения с помощью интеграла Вычисление двойных интегралов Длина дуги кривой с помощью интеграла Площадь поверхности вращения с помощью интеграла Определение работы силы с помощью интеграла

с друзьями

Источник: https://function-x.ru/integral4.html

Refy-free
Добавить комментарий