Методы проецирования

Лекция 1 метод проецирования

Методы проецирования

Лекция 1 метод проецирования

ЦЕНТРАЛЬНОЕ ПРОЕЦИРОВАНИЕ

Центральное проецирование является наиболее общим случаем получения проекций геометрических фигур.

В основу построения любого изображения положена операция проецирования, которая заключается в следующем: в пространстве выбирают произвольную точку S – центр проецирования, и плоскость, не проходящую через точку S – плоскость проецирования (рис.1).

Рис. 1.

А , А¹S, А, В – точки в пространстве S – центр проекций [SA), [SB) – проецирующие лучи А1;В1- проекции точек А и В

– плоскость проекций

[SA) ∩ = А1

[SB) ∩ =В1

Чтобы спроецировать точку А пространства на плоскость , через центр проецирования S и точку А проводят прямую до ее пересечения с плоскостью проекций (рис.1).

Рис. 2.  

Проекцией фигуры называют множество проекций всех ее точек.

Проекция криволинейной фигуры представляет собой линию пересечения проецирующей поверхности и плоскости проекций (рис.2).

Свойства центрального проецирования:

Так как через две различные точки можно провести одну и только одну прямую, то при заданном центре проецирования и плоскости проекций, каждая точка пространства будет иметь одну и только одну центральную проекцию.

Рис.3.

Обратное утверждение – каждой центральной проекции точки однозначно соответствует точка пространства, не имеет смысла.

Поэтому одна центральная проекция точки не дает возможности судить о положении самой точки в пространстве.

Для того, чтобы сделать возможным определение положения точки в пространстве по ее центральным проекциям, необходимо иметь две центральные проекции этой точки, полученные из двух различных центров (рис.3).

ПАРАЛЛЕЛЬНОЕ ПРОЕЦИРОВАНИЕ

Широкое применение в практике получил тот случай, когда центр проецирования удален в бесконечность. Проецирующие лучи при этом параллельны между собой, и проекции точек, фигур и тел получают названия параллельных проекций.

В свою очередь параллельные проекции подразделяются на прямоугольные и косоугольные.

В первом случае плоскость проекций с направлением проецирования образует угол 90о, а во втором не равный 90о (рис.4 и рис.5).

Рис. 4. Рис.5.  

Каждой точке пространства соответствует только одна параллельная проекция. Обратное утверждение не имеет смысла.

Для определения точки в пространстве необходимо иметь две ее параллельные проекции, полученные при различных направлениях проецирования (рис.6).

Рис. 6.  

В дальнейшем мы будем пользоваться параллельными проекциями, ортогональными (прямоугольными) и аксонометрическими, причем первые будут прямоугольными, а вторые прямоугольными и косоугольными.

1. 3. Ортогональные проекции точки (Эпюр Монжа).

Сущность метода ортогонального проецирования заключается в том, что предмет проецируется на две взаимно перпендикулярные плоскости лучами, ортогональными (перпендикулярными) к этим двум плоскостям.

Одну из этих плоскостей проекций располагают горизонтально, а вторую – вертикально. Плоскость называется горизонтальной плоскостью проекций, – фронтальной. Плоскости и бесконечны и непрозрачны. Линия пересечения плоскостей проекций называется осью проекций (координат) и обозначается ОХ.

Плоскости проекций делят пространство на четыре двугранных угла (четверти) I, II, III, IV (рис.7).

Рис.7. Система взаимно перпендикулярных плоскостей проекций

При построении проекций необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость.

А1 – горизонтальная проекция точки А

А2 — фронтальная проекция точки А

Проецирующие лучи определяют плоскость

a ([АА2] [АА1]) перпендикулярную плоскостям проекций и линии их пересечения – оси ОХ. Эта плоскость пересекает и по отрезкам прямых [А1Ах] и [А2Ах], которые образуют с осью Х и друг с другом прямые углы с вершиной в точке Ах

АА1 = А2Ах – расстояние от точки А до

АА2 = А1Ах — расстояние от точки А до

Ортогональные проекции точки на две взаимно перпендикулярные плоскости вполне определяют положение точки в пространстве.

Построение проекций точек в 4-х угловых пространствах показано на рис.8.

Рис.8.

Чтобы получить плоский чертеж, плоскость совмещают вращением вокруг оси ОХ с плоскостью .

Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещены определенным образом одна с другой, называется эпюром Монжа (рис.9).

I II III IV N M
Рис.9.

Проекции одной и той же точки на две взаимно перпендикулярные плоскости располагаются на прямой, перпендикулярной оси проекций х12.

Эта прямая называется направлением проецирования или линией проекционной связи.

ЛЕКЦИЯ 2

ПРЯМАЯ ЛИНИЯ

Для построения изображения прямой линии на плоскостях проекций достаточно построить проекции двух точек этой прямой (рис.1).

Рис.1

a([ВВ2] || [АА2]) ∩ =a2

([АА1] || [ВВ1]) ∩ = a1

а–прямая в пространстве, a1 – горизонтальная проекция прямой, а2 – фронтальная проекция прямой.

Проекция прямой линии есть также прямая линия.

Точка, лежащая на прямой линии, имеет свои проекции на соответствующих проекциях прямой. C1 [А1В1]; C2 [А2В2].

В каком отношении точка делит отрезок прямой линии в пространстве, в таком же отношении проекции этой точки делят соответствующие проекции отрезка.

.

Совмещая плоскости проекций и строим эпюр отрезка [АВ]. Так как в дальнейшем будут рассматриваться только безосные эпюры, определим разницу между эпюром с осями и безосным эпюром.

По эпюру с осями можно определить положение точек А и В в пространстве по координатам X, Y, Z. Безосный эпюр точек А и В не определяет их положение в пространстве, но позволяет судить об их относительности ориентировке (рис.2).

∆Х характеризует смещение точки А по отношению к точке В в направлении параллельном и . Относительное смещение точки в направлении перпендикулярном плоскости определяется отрезком ∆У; отрезок ∆Z показывает превышение точки В над точкой А.

Эпюр с осями Безосный эпюр
Рис.2.

Положение прямой относительно плоскостей проекций.

1. Прямыми общего положения называются прямые, не параллельные ни одной из плоскостей проекций (рис.1, 2, 3).

Рис. 3

2. Прямые уровня — прямые, параллельные плоскостям проекций.

а) Прямые, параллельные горизонтальной плоскости проекций, называются горизонтальными прямыми или горизонталями (рис.4)

Рис.4.

[АВ] b

[А1В1] b1

[А2В2] b2

b2 ┴ линии связи;

b2 ║ ОХ

b1 – конгруэнтна самой прямой

б) Прямая, параллельная , называется фронтальной прямой или фронталью (рис.5).

Рис. 5

[CD] c

[C1D1] c1

[C2D2] c2

c1┴ линии связи

c1║ ОХ

c2 конгруэнтна самой прямой

в) Прямая, параллельная называется профильной прямой (рис.6). d2 OX, d1 OX, d3- конгруэнтна самой прямой.

Рис.6.

[MN] d

[M1N1] d1

[M2N2] d2

3. Прямые, перпендикулярные плоскостям проекций, называются проецирующими.

Прямая, перпендикулярная , называется горизонтально-проецирующей прямой. Одна из проекций превращается в точку, а другая совпадает с линией проекционной связи и конгруэнтна самой прямой (рис.7). n , [АВ] n; [А2В2] n2; А1 В1 n1.

Рис. 7

Прямая, перпендикулярная , называется фронтально-проецирующей прямой (рис.8). m , [CD] m; [C1D1] m1; C2 D2 m2; m1 конгруэнтна m.

Рис. 8

Прямая, перпендикулярная , называется профильно-проецирующей прямой (рис.9). ℓ , [MN] ℓ; [M1N1] ℓ 1; [M2N2] ℓ 2 ; [M1N1]=[M2N2]=[MN].

Рис. 9

Прямая, параллельная плоскости симметрии (рис.10).

Прямая, параллельная плоскости тождества (рис.11).

Рис. 10 Рис.11

ПРОЕКЦИИ ПЛОСКИХ УГЛОВ

Рис.20.

Плоский угол проецируется на плоскость проекций в истинную величину тогда, когда обе его стороны параллельны плоскости проекций.

Если стороны прямого угла произвольно расположены по отношению к плоскостям проекций, то прямой угол может проецироваться и тупым и острым.

Если хотя бы одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость прямой угол спроецируется в виде прямого же угла (рис.20).

Пусть стороны АВ прямого угла АВС║ , требуется доказать, что проекция его угол А1В1С1=90о, [АВ] ([ВВ1]∩[ВС]), но АВ║А1В1 – поэтому А1В1 , следовательно А1В1 В1С1. Если сd , а c║ , то c2 d2; d1 – произвольное положение (одно из множества).

Рис.21  

ЛЕКЦИЯ 3

ПЛОСКОСТЬ

Положение плоскости в пространстве можно определить:

1. Тремя точками, не лежащими на одной прямой;

2. Прямой и точкой вне ее;

3. Двумя пересекающимися прямыми;

4. Двумя параллельными прямыми (рис.1).

(А1В1С1)(a1С) (mn) δ (bс)
Рис. 1.
Рис. 2.

Плоскость может быть задана также отсеками плоской фигуры (рис.2).

Возможны следующие положения плоскости относительно плоскостей проекций:

1.Плоскость, не перпендикулярная ни одной из плоскостей проекций, называется плоскостью общего положения (рис.1 и 2).

2. Частные положения плоскости:

а) Плоскость, перпендикулярная к горизонтальной плоскости проекций , называется горизонтально-проецирующей (рис.3). Горизонтальная проекция такой плоскости представляет собой прямую, являющуюся следом этой плоскости = ∩ угол , который образуется между плоскостью и , проецируется на плоскость без искажения.

Горизонтальные проекции всех точек и любых фигур, лежащих в горизонтально-проецирующей плоскости, совпадают со следом этой плоскости α1= (АВС)∩ (рис. 3).

Рис. 3.

б) Плоскость, перпендикулярная к фронтальной плоскости проекций , называется фронтально-проецирующей плоскостью, изображается следом плоскости, полученной от пересечения заданной плоскости (АВС) с фронтальной плоскостью проекций . =(АВС)∩ .

Рис. 4.

Фронтальные проекции всех точек и фигур, лежащих в этой плоскости, совпадают с ее фронтальным следом. Угол φ между плоскостью и проецируется без искажения, т.е.φ2 ≡ φ (рис. 4.).

Плоскость, перпендикулярная к профильной плоскости проекций называется профильно-проецирующей плоскостью.

Частный случай, когда профильно-проецирующая плоскость проходит через ось ОХ и делит пополам угол между плоскостями и — плоскость симметрии (рис.5).

Рис.5

Основные свойства проецирующих плоскостей состоят в том, что все геометрические образы, лежащие в них, на одной из плоскостей проекций изображаются прямой, совпадающей со следом плоскости, т.е. с линией пересечения проецирующей плоскости с соответствующей плоскостью проекций.

Плоскости, перпендикулярные к двум плоскостям проекций, называется плоскостями уровня. Плоскость δ и . Фронтальная и профильная проекция такой плоскости – горизонтальные прямые. Любая фигура, расположенная в плоскости δ2 на горизонтальную плоскость проекций проецируется без искажения.

а) Плоскость δ, параллельная горизонтальной плоскости проекций , называется горизонтальной плоскостью (рис.6). Изображается следом плоскости, полученным от пересечения плоскости δ с плоскостью проекций : δ2= δ . АВС δ; А2В2С2 δ2; А1В1С1=АВС.

Рис.6.

б) Плоскость , параллельная плоскости , называется фронтальной (рис.7). 1= . АВС ; А1В1С1 1; А2В2С2=АВС.

Рис.7.

Любая фигура, расположенная в этой плоскости, проецируется на без искажений.

Все геометрические образы, расположенные в плоскостях, параллельных плоскостям проекций, проецируются на эти плоскости проекций без искажения.

3.2. ПРЯМАЯ И ТОЧКА В ПЛОСКОСТИ

1. Прямая принадлежит плоскости, если она имеет с этой плоскостью две общие точки (рис.8).

2. Прямая принадлежит плоскости, если она имеет с плоскостью одну общую точку и параллельна прямой, лежащей в этой плоскости (рис.9).

Рис.8. Рис.9
с (аb); [12] c (аb)  С (АВС); Сd; С1d1; С2d2; d║[AB]; d1║[A1B1]; d2║[A2B2].  

Построение точки в плоскости производится, исходя из условия, что она должна находиться на прямой, лежащей в этой плоскости. Т.о. задача на построение точки в плоскости сводится к задаче на построение прямой в этой плоскости (рис.

10). Чтобы построить горизонтальную проекцию точки М, принадлежащей плоскости (аb), нужно провестипрямую (аb); [12] ℓ; [1222] ℓ2; [1121] ℓ1; М2 ℓ2 ; М1 ℓ1 .

Рис.10

3.3. ГЛАВНЫЕ ЛИНИИ ПЛОСКОСТИ

Главными линиями плоскости называются прямые, лежащие в данной плоскости и параллельные плоскостям проекций , или . Линии плоскости, параллельные называются горизонталями плоскости; линии плоскости, параллельные – фронталями плоскости; линии плоскости, параллельные – профильными прямыми (рис.11).

Линии наибольшего ската – прямые, проведенные по плоскости перпендикулярно к горизонталям (рис.12).

Линия наибольшего ската и ее горизонтальная проекция образуют линейный угол, которым измеряется двугранный угол, составленный плоскостью (f ∩ h) и плоскостью проекций .

С помощью главных линий плоскости оказывается удобным решать вопросы о взаимном расположении точки и плоскости (рис.13). Дана плоскость (f ∩ h) и точка А. Нужно определить принадлежит ли точка А плоскости. Для этого через точку А проводим горизонталь. Горизонтальная проекция точки А вне горизонтали, значит точка А не лежит в плоскости.

Рис.11 Рис.12а
Рис. 12б Рис. 13

ЛЕКЦИЯ 4

ДВЕ ПЛОСКОСТИ.

Две плоскости могут быть параллельны друг к другу или пересекаться между собой.

Параллельные плоскости.

Две плоскости параллельны, если в каждой из них можно построить по две пересекающихся между собой прямые линии так, чтобы прямые одной плоскости были соответственно параллельны прямым другой плоскости.

Рис.1

Наиболее простой случай – параллельность двух проецирующих плоскостей. Здесь достаточно параллельности следов плоскостей (рис.1).

В случае параллельности плоскостей общего положения необходимо в каждой из них указать по две соответственно параллельные прямые (рис.2). В качестве таких прямых можно взять главные линии плоскости или какие-то другие прямые. (АВС)║ (аb)║ (dc).

(АВС)а║h; а1║h12║h2 b║f; b1║f1; b2║f2 (аb) d║[AB]; d1║[A1B1]; d2║[A2B2] с║[BC]; с1║[B1C1]; с2║[B2C2]; (dc)
Рис.2

Пересекающиеся плоскости.

Основная задача – построение линии пересечения двух плоскостей, которая вполне определяется двумя точками, принадлежащими обеим плоскостям:

а) проецирующие

Проецирующие плоскости одного наименования, как перпендикулярные к одной и той же плоскости проекций, пересекаются по прямой линии также перпендикулярной к этой плоскости проекций (рис.3). Проецирующие плоскости разных наименований пересекаются по прямой, для которой они будут проецирующими плоскостями (рис.4).

Рис.3 Рис.4.
∩ = а ; ∩ = b ∩ =n; n1 ; n2

б) Наиболее просто решается задача, если одна из пересекающихся плоскостей проецирующая (рис.5). (АВС)∩ =m; m1 . m – линия пересечения, так как линия пересечения принадлежит и плоскости , то 12 лежат на следе плоскости.

Рис. 5

в) Две плоскости общего положения.

Рассмотрим случай пересечения плоскостей общего положения (рис.6).

Рис.6

Три плоскости пересекаются в одной точке, поэтому общий метод построения точек линии пересечения состоит в следующем: две пересекающиеся плоскости пересекаются третьей, вспомогательной плоскостью.

∩ =m; ∩ =n; m1∩n1=K1; K2

∩ = ; ∩ = ; ∩ =L1;L2 .

Через точки K и L проводим линию пересечения ℓ (рис.7).

Рис.7

Некоторого упрощения можно достичь, если вспомогательные плоскости проводить через прямые, задающие плоскости (рис.8). (АВС)∩ (DEF)=[LK].

Рис.8

ЛЕКЦИЯ 5 МЕТОДЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА.

Многие пространственные задачи в общем виде решаются довольно сложно, однако будучи поставлены в частное положение, решаются легко. Примером может служить одна из основных задач курса: определение расстояния от точки до прямой.

Сущность методов преобразования чертежа состоит в том, что задача общего положения переводится в частное, где она решается значительно легче.

Будем рассматривать следующие методы преобразования чертежа:

1. Метод перемены плоскостей проекций

2. Метод вращения

ЛЕКЦИЯ 6

МЕТОД ВРАЩЕНИЯ

Сущность метода вращения состоит в том, что при фиксированном положении плоскостей проекций будем вращать геометрические элементы задачи до такого положения, в котором задача могла бы быть решена легко.

При вращении вокруг неподвижной оси каждая точка вращаемой фигуры перемещается в плоскости, перпендикулярной к оси вращения, точка перемещается по окружности, центр которой лежит на оси вращения, а радиус равен расстоянию от точки до оси.

Все точки фигуры должны поворачиваться вокруг одной оси в одну и ту же сторону, на один и тот же угол. Точки, находящиеся на оси вращения, остаются неподвижными. Наиболее просто задача решается, если ось вращения перпендикулярна или параллельна плоскости проекций.

ЛЕКЦИЯ 7

7.1. ГРАННЫЕ ПОВЕРХНОСТИ И МНОГОГРАННИКИ.

Гранные поверхности образуются перемещением прямолинейной образующей ℓ по ломаной направляющей m. При этом, если одна точка S образующей неподвижна, получается парамидальная поверхность, если же при перемещении образующая параллельна заданному направлению, то создается призматическая поверхность (рис.1).

Рис. 1.

Элементами гранных поверхностей являются: вершина S (у призматических поверхностей она находится в бесконечности), грань (часть плоскости, ограниченная одним участком направляющей m и крайними относительно его положениями образующей ℓ), ребро (линия пересечения смежных граней).

Определитель пирамидальной поверхности включает в себя вершину S, через которую проходят образующие, и направляющую: S ℓ; ℓ∩m.

Определитель призматической поверхности содержит направление n, которому параллельны все образующие ℓ поверхности: ℓ║n, ℓ∩m.

Замкнутые гранные поверхности, образованные некоторым числом (не менее четырех) граней, называются многогранниками.

Из числа многогранников выделяют группу правильных многогранников, у которых все грани правильные и равные многоугольники, а многогранные углы при вершинах выпуклые и содержат одинаковое число граней.

Например, тетраэдр – правильный четырехгранник, а гексаэдр – куб, октаэдр – многогранник.

Пирамида – многогранник, в основании которого лежит произвольный многоугольник, а боковые грани – треугольники с общей вершиной S.

На комплексном чертеже пирамида задается проекциями ее вершин и ребер. Видимость ребер определяется с помощью конкурирующих точек (рис.2).

Рис. 2.

Призма – многогранник, у которого основания – два одинаковых и взаимно параллельных многоугольника, а боковые грани – параллелограммы.

Если ребра призмы перпендикулярны плоскости основания, то такую призму называют прямой (рис.3).

Рис. 3.

Лекция 1 метод проецирования



Источник: https://infopedia.su/3x9e4e.html

§ 7. Способы проецирования

Методы проецирования

Учебник для 9 класса

7.1. Многообразие геометрических форм в природе. На уроках математики вы уже познакомились с некоторыми геометрическими фигурами. Под фигурой понимают любую совокупность (множество) точек. Всякую сложную фигуру можно разделить на более простые.

Если все точки фигуры лежат в одной плоскости, фигуру называют плоской: треугольник, квадрат и др. Совокупность точек, расположенных в пространстве, образует пространственную фигуру: куб, цилиндр и др. Фигуры в пространстве называют телами.

Предметы, которые нас окружают, детали машин имеют, как правило, сложную реальную геометрическую форму.

Однако, присмотревшись к ним внимательно, можно заметить, что некоторые из них состоят из одного или нескольких простых геометрических тел или их видоизмененных частей.

Такими геометрическими телами, образующими форму предметов, являются призмы (рис. 22, а), пирамиды (рис. 22, б), цилиндры (рис. 23, а), конусы (рис. 23, б), шары и др.

Рис. 22

Рис. 23

Форма каждого геометрического тела имеет свои характерные признаки. По ним мы отличаем призму от цилиндра, пирамиду от конуса и т. п. Эти признаки используются и при построении чертежей геометрических тел или состоящих из них предметов и деталей.

Однако, прежде чем выполнять такие чертежи, выясним, какие правила положены в основу способов их построения.

  1. Какие геометрические тела вам известны?
  2. Посмотрите вокруг себя и найдите в форме окружающих предметов простые геометрические тела.

7.2. Общие сведения о проецировании. Изображения предметов на чертежах в соответствии с правилами государственного стандарта выполняют по способу (методу) прямоугольного проецирования. Проецированием будем называть процесс получения проекций предмета.

Рассмотрим пример. Возьмем в пространстве произвольную точку А и какую-нибудь плоскость. Обозначим эту плоскость, например, прописной буквой П (пи) греческого алфавита с индексом один — т. е. П1 (рис. 24). Проведем через точку А прямую так, чтобы она пересекла плоскость П1 в некоторой точке А'.

Тогда точка А' будет проекцией точки А. Проекции точек будем обозначать теми же буквами, что и сами точки, но со штрихом. Плоскость, на которой получается проекция, называется плоскостью проекций. Прямая АА' называется проецирующим лучом.

С его помощью точка А проецируется на плоскость П1.

Рис. 24

Примечание. Существуют и другие обозначения проекций точек — A1, A2, А3 — и плоскостей проекций — Н, V, W.

Указанным способом могут быть построены проекции всех точек любой фигуры. Так, чтобы получить проекцию А'B' отрезка АВ прямой (рис. 25, а), необходимо провести проецирующие лучи через две точки отрезка — А и В.

При этом, если прямая или ее отрезок совпадают по направлению с проецирующим лучом (отрезок CD на рис. 25, б), они проецируются на плоскость проекций в точку.

На изображениях проекции совпадающих точек обозначают знаком =, например: C = D', как на рисунке 25, б.

Рис. 25

Для построения проекции какой-либо фигуры необходимо через ее точки провести воображаемые проецирующие лучи до пересечения их с плоскостью проекций. Проекции всех точек фигуры на плоскости и образуют проекцию заданной фигуры.

Рассмотрим, например, получение проекции такой геометрической фигуры, как треугольник (рис. 26).

Рис. 26

Проекцией точки А на заданную плоскость П1 будет точка А' как результат пересечения проецирующего луча АА' с плоскостью проекций. Проекциями точек Б и С будут точки В' и С. Соединив на плоскости точки А', В' и С отрезками прямых, получим фигуру А'В'С, которая и будет проекцией заданной фигуры.

В дальнейшем под термином проекция мы будем понимать изображение предмета на плоскости проекций.

Слово «проекция» латинское. В переводе оно означает «бросать (отбрасывать) вперед».

Положите на бумагу какой-нибудь плоский предмет и обведите его карандашом. Вы получите изображение, соответствующее проекции этого предмета. Примерами проекций являются фотографические снимки, кинокадры и др.

Изображения предметов, полученные путем проецирования, будем называть проекционными.

  1. Что представляет собой проецирование?
  2. Как строить на плоскости проекцию точки? проекцию фигуры?

7.3. Центральное и параллельное проецирование. Если проецирующие лучи, с помощью которых строится проекция предмета, исходят из одной точки, проецирование называется центральным (рис. 27). Точка, из которой исходят лучи, называется центром проецирования. Полученная при этом проекция называется центральной.

Рис. 27

Центральную проекцию часто называют перспективной. Примерами центральной проекции являются фотоснимки и кинокадры, тени, отброшенные от предмета лучами электрической лампочки, и др. Центральные проекции применяют в рисовании с натуры.

Если проецирующие лучи параллельны друг другу (рис. 28), то проецирование называется параллельным, а полученная проекция — параллельной. Параллельной проекцией можно условно считать солнечные тени предметов. Примеры параллельного проецирования приведены на рисунках 25, а и 26.

Рис. 28

Строить изображение предмета при параллельном проецировании проще, чем при центральном. Так, если отрезок АВ (рис. 28) или любая плоская фигура, как, например, на рисунке 29, параллельны плоскости проекций, то их проекции и сами проецируемые фигуры равны.

Рис. 29

При параллельном проецировании все лучи падают на плоскость проекций под одинаковым углом. Если это любой угол, который не равен 90°, как на рисунке 29, а или на рисунке 25, а, то проецирование называется косоугольным.

В том случае, когда проецирующие лучи перпендикулярны плоскости проекций (см. рис. 29, б), т. е. составляют с ней угол 90°, проецирование называется прямоугольным (см. рис. 26).

Полученная при этом проекция называется прямоугольной.

  1. Какое проецирование называется центральным? параллельным? косоугольным? прямоугольным?
  2. Почему строить изображение в параллельной проекции проще, чем в центральной?

7.4. Получение аксонометрических проекций. В технической графике особую группу составляют проекции, которые получены путем параллельного проецирования предмета вместе с осями х, у и z пространственной системы прямоугольных координат на произвольную плоскость (рис.

30). Обозначим ее П0. Полученную таким образом проекцию на плоскости П0 называют аксонометрической. В зависимости от направления проецирования по отношению к плоскости проекций аксонометрические проекции могут быть как прямоугольными, так и косоугольными.

Рис. 30

Слово «аксонометрия» — греческое. В переводе оно означает «измерение по осям».

Проекции х0, у0 и z0 осей координат на плоскости проекций называют аксонометрическими. Когда строят аксонометрические проекции предметов, размеры откладывают по осям или параллельно им.

Аксонометрические проекции относят к числу наглядных изображений. По ним можно легко получить общее представление о внешней форме предмета.

Однако на аксонометрических проекциях предметы получаются с искажениями. Например, окружности проецируются в эллипсы, прямые углы — в тупые или острые. Искажаются и некоторые размеры предмета. Поэтому такие проекции применяют в основном при выполнении технических рисунков.

Для получения изображений на чертежах используют метод прямоугольного проецирования на одну, две и более плоскости проекций.

  1. Какие проекции называют аксонометрическими?
  2. Какие аксонометрические проекции получаются в зависимости от направления проецирования?

Источник: http://tepka.ru/cherchenie_9/7.html

ЧЕРЧЕНИЕ. Школьный интернет-учебник — Проецирование 2-1

Методы проецирования

Изображения на чертеже выполняют по правилам проецирования. Проецированием называется процесс получения изображения предмета на плоскости – бумаге, экране, классной доске и т. д. Получившееся при этом изображение называют проекцией.

«Проекция» — слово латинское. В переводе на русский язык оно означает «бросать (отбрасывать) вперед».

В основе правил построения изображений на чертеже лежит метод проекций. Метод проекций — отображение геометрической фигуры на плоскость путем проецирования ее (фигуры) точек.

Чтобы построить изображение предмета по методу проекций, необходимо через точки на предмете (например, через его вершины) провести воображаемые лучи до встречи их с плоскостью. Лучи, которые проецируют предмет на плоскость, называются проецирующими.

Плоскость, на которой получается изображение предмета, называется плоскостью проекции.

Рис. 1. Понятия проецирования.

 Способы изображения предметов отличаются друг от друга, как методами проецирования, так и условиями их построения. Одни способы дают более наглядное изображение, нетрудны для построения, другие менее наглядны, но зато более просты для построения.

Чтобы выяснить, что представляет собой метод проекций, обратимся к примерам.

Поместим перед электрической лампочкой какой-нибудь предмет. Тень, полученную на стене, можно принять за проекцию предмета. Положите на бумагу какой-нибудь плоский предмет и обведите его карандашом. Вы получите изображение, соответствующее проекции этого предмета.

 Посмотрим  процесс получения проекций геометрических фигур, из которых состоят дорожные знаки (рис. 2, 5, 8). Для построения изображений этих геометрических фигур использован метод проекций.

На рисунке 2,б проекцией точки А будет точка а, т.е. точка пересечения проецирующего луча Оа с плоскостью проекций. Проекцией точки В будет точка b и т. д. Если теперь соединить на плоскости эти точки прямыми линиями, то мы получим проекцию изображаемой фигуры, например треугольника.

 Рис.  2. Центральное проецирование

 На изображениях точки в натуре, т е точки на предмете, будем обозначать большими (прописными) буквами латинского алфавита. Проекции этих точек на плоскость обозначают теми  же, но малыми (строчными) буквами.

Рассмотренный пример построения изображений составляют сущность метода проекций.

Если проецирующие лучи, с помощью которых строится изображение предмета, расходятся из одной точки, проецирование называется центральным (рис. 2). Точка, из которой выходят лучи (О), называется центром проецирования. Полученное при этом изображение предмета называется центральной проекцией.

 Рис. 3. Центральное проецирование на плоскости.

 Величина проекции зависит от положения предмета по отношению к картинной плоскости, а также от расстояния его до этой плоскости и до центра проецирования. На рис.

3, а предмет расположен между центромО и картинной плоскостьюК и поэтому его изображение получается увеличенным. Если предмет расположить за плоскостьюК (рис.

3, б), то изображение получится уменьшенным.

Центральные проекции часто называют перспективой. Взаимно параллельные линии предмета, не параллельные картинной плоскости, проецируются как группа линий, сходящихся в одной точке (рис. 4).

 Рис. 4. Перспектива

 Проекции каждой группы параллельных линий имеют свою точку схода О1 и О2. Точки схода проекций всех групп параллельных линий расположены на одной прямой, называемой линией горизонта.

Предмет, изображенный на рис. 4, расположен  по отношению к картинной плоскости так, что ни одна из его граней не параллельна этой плоскости.

Такую центральную проекцию называют угловой перспективой.

Изображение, полученное методом центрального проецирования, сходно с фотографией, так как оно получается примерно таким, каким его видит глаз человека.

Также примерами центральной проекции являются  кинокадры, тени, отброшенные от предмета лучами электрической лампочки, и др.

Метод центрального проецирования используется в архитектуре, строительстве, а также в академическом рисовании – рисовании с натуры.

 Если проецирующие лучи параллельны друг другу, то проецирование называется параллельным, а полученное изображение – параллельной проекцией. Примером параллельной проекции являются солнечные тени (рис. 5, 8).

Рис.  5. Параллельное проецирование

 При параллельном проецировании все лучи падают на плоскость проекций под одним и тем же углом.

Если это любой угол, отличный от прямого, то проецирование называется косоугольным (рис. 6). В косоугольной проекции, как и в центральной, форма и величина предмета искажаются. Однако строить предмет в параллельной косоугольной проекции проще, чем в центральной.  

Рис.  6.  Параллельное косоугольное проецирование на плоскости.

 В техническом черчении такие проекции используют для построения наглядных изображений (рис.7).

 Рис. 7. Процесс поучения наглядного изображения.

 В том случае, когда проецирующие лучи перпендикулярны к плоскости проекций (рис. 8), т. ё. составляют с ней угол в 90°. проецирование называют прямоугольным. Полученное при этом изображение называется прямоугольной проекцией предмета.

Рис.  8.  Параллельное прямоугольное проецирование.

 Проекционное черчение имеет большое значение для развития пространственного представления, без которого невозможно сознательно читать чертежи и тем более выполнять их (рис 9).

Прямоугольные проекции называют также ортогональными. Слово «ортогональный» происходит от греческих слов «orthos» — прямой и «gonia» — угол.

 Рис.  9. Параллельное прямоугольное проецирование на плоскости

 Способ прямоугольного проецирования является основным в черчении. Он используется для построения изображений на чертежах и наглядных изображений предметов, так как они достаточно наглядны и выполнять их проще, чем центральные.

 Чертежи в системе прямоугольных проекций дают достаточно полные сведения о форме и размерах предмета, так как предмет изображается с нескольких сторон.

Источник: https://cherch-ikt.ucoz.ru/index/proecirovanie_2_1/0-9

Методы проецирования

Методы проецирования

В начертательной геометрии чертеж является основным инструментом решения различных пространственных задач. Поэтому к выполняемому чертежу предъявляются ряд особых требований, среди которых наиболее существенными являются следующие: чертеж должен быть наглядным, обратимым, достаточно простым и точным.

Остановимся более подробно на обратимости чертежа. Под этим свойством понимается точное воспроизведение формы и размеров предмета по его изображению.

Действительно для всех видов технических и горно-геологических чертежей это требование является особенно важным, так как при помощи чертежа в машиностроении изготавливается та или иная деталь, в горном деле осуществляется проходка горных выработок, в геологии – оценка запасов полезного ископаемого и т.д.

Основным методом получения изображений в начертательной геометрии является проецирование.

Чтобы понять сущность проецирования, обратимся к рис. 1.

Выбираем центр проецирования — произвольную точку S пространства и поверхность проецирования, не проходящую через точку S, например, плоскость проекций p0.

Для того, чтобы спроецировать некоторую точку A пространства на плоскость p0, необходимо через центр проецирования S провести проецирующую прямуюSA до ее пересечения в точке A0 с плоскостью p0.

При этом точка A0 называется проекцией точки A на плоскости p0. Проекцией фигуры называется совокупность проекций всех ее точек на выбранную поверхность проецирования (например, на рис.

1 проекцией треугольника BCD на плоскости p0 является треугольник B0C0D0).

Описанный метод проецирования путем проведения проецирующих прямых через точки заданной фигуры и центр проецирования, называется центральным.

В случае, если проецирование осуществляется из бесконечно удаленной точки пространства (рис. 2), то все проецирующие прямые окажутся взаимно параллельными. Этот метод проецирования называется параллельным, а направление m, по которому оно осуществляется, — направлением (вектором) проецирования.

Если направление параллельного проецирования перпендикулярно плоскости проекций, то оно называется прямоугольным или ортогональным. Во всех остальных случаях параллельное проецирование называется косоугольным.

Изображения, полученные при помощи центрального проецирования, обладают хорошей наглядностью, что объясняется устройством зрительного аппарата человеческого глаза.

Однако, этот метод имеет существенные недостатки, заключающиеся, во-первых, в сложности построения изображения предмета и, во-вторых, в низких метрических свойствах построенных проекций: вследствие значительных искажений, возникающих при данном методе проецирования, определить истинные размеры предмета весьма затруднительно. Поэтому этот способ имеет ограниченное применение в практике и используется, когда от чертежа требуется прежде всего наглядность.

Несмотря на то, что параллельное проецирование по сравнению с центральным дает меньшую наглядность, параллельные проекции и особенно ортогональные обладают лучшей измеримостью и простотой построения.

Задачи, решаемые методами начертательной геометрии, принято делить на метрические и позиционные.

Метрические задачиимеют цельюопределение размеров различных предметов по их изображению.

К таким задачам относятся задачи по определению натуральной величины геометрических фигур, расстояний и углов между ними.

В горно-геологической практике – это задачи на определение глубины и угла наклона буровых скважин, угла падения пласта полезного ископаемого, углов между осями горных выработок и т.п.

Впозиционных задачах определяется взаимное расположение различных объектов: точек, прямых линий, плоскостей, пространственных фигур. К этой категории задач относятся, например, установление точки встречи буровой скважины с плоскостью залежи, построение линии пересечения кровли и подошвы пласта полезного ископаемого с горной выработкой и многие другие.

Для быстрого и удобного решения пространственных задач в начертательной геометрии используются несколько систем изображений, особенности которых приведены в таблице 1.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/3_78138_metodi-proetsirovaniya.html

Начертательная геометрия | Лекция 1. Методы проецирования

Методы проецирования

Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Известны два метода проецирования: центральное  и параллельное.

Центральное проецирование заключается в проведении через каждую точку (А, В, С,…) изображаемого объекта и определённым образом выбранный центр проецирования (S) прямой линии (SA, SB, >… — проецирующего луча).

Рисунок 1.1 – Центральное проецирование

Введём следующие обозначения (Рисунок 1.1):

S – центр проецирования (глаз наблюдателя);

π1 – плоскость проекций;

A, B, C – объекты проецирования – точки;

SA, SB – проецирующие прямые (проецирующие лучи).

Интерактивная модельПринцип центрального проецирования

Примечание: левой клавишей мыши можно переместить точку в горизонтальной плоскости, при щелчке на точке левой клавишей мыши, изменится направление перемещения и можно будет ее переместить по вертикали.

 
Центральной проекцией точки называется точка пересечения проецирующей прямой, проходящей через центр проецирования и объект проецирования (точку), с плоскостью проекций.

Свойство 1. Каждой точке пространства соответствует единственная проекция, но каждой точке плоскости проекций соответствует множество точек пространства, лежащих на проецирующей прямой.

Докажем это утверждение.

На рисунке 1.1: точка А1 – центральная проекция точки А на плоскости проекций π1. Но эту же проекцию могут иметь все точки, лежащие на проецирующей прямой. Возьмём на проецирующей прямой SA точку С. Центральная проекция точки С (С1) на плоскости проекций π1 совпадает с проекцией точки А (А1):

  1. С ∈  SA;
  2. SC ∩ π1=C1 → C1 ≡ A1.

Следует вывод, что по проекции точки нельзя судить однозначно о её положении в пространстве.

Чтобы устранить эту неопределенность, т.е. сделать чертеж обратимым, введём еще одну плоскость проекций (π2) и ещё один центр проецирования (S2) (Рисунок 1.2).

Рисунок 1.2 – Иллюстрация 1-го и 2-го свойств

Построим проекции точки А на плоскости проекций π2. Из всех точек пространства только точка А имеет своими проекциями А1 на плоскость π1 и А2 на π2 одновременно. Все другие точки лежащие на проецирующих лучах будут иметь хотя бы одну отличную проекцию от проекций точки А (например, точка В).

Свойство 2. Проекция прямой есть прямая.

Докажем данное свойство.

Соединим точки А и В между собой (Рисунок 1.2). Получим отрезок АВ, задающий прямую. Треугольник ΔSAB задает плоскость, обозначенную через σ. Известно, что две плоскости пересекаются по прямой: σ∩π1=А1В1, где А1В1 – центральная проекция прямой, заданной отрезком АВ.

Метод центрального проецирования – это модель восприятия изображения глазом, применяется главным образом при выполнении перспективных изображений строительных объектов, интерьеров, а также в кинотехнике и оптике. Метод центрального проецирования не решает основной задачи, стоящей перед инженером – точно отразить форму, размеры предмета, соотношение размеров различных элементов.

1.2. Параллельное проецирование

Рассмотрим метод параллельного проецирования. Наложим три ограничения, которые позволят нам, пусть и в ущерб наглядности изображения, получить чертёж более удобным для использования его на практике:

  1. Удалим оба центра проекции в бесконечность. Таким образом, добьемся того, что проецирующие лучи из каждого центра станут параллельными, а, следовательно, соотношение истинной длины любого отрезка прямой и длины его проекции будут зависеть только от угла наклона этого отрезка к плоскостям проекций и не зависят от положения центра проекций;
  2. Зафиксируем направление проецирования относительно плоскостей проекций;
  3. Расположим плоскости проекций перпендикулярно друг другу, что позволит легко переходить от изображения на плоскостях проекций к реальному объекту в пространстве.

Таким образом, наложив эти ограничения на метод центрального проецирования, мы пришли к его частному случаю – методу параллельного проецирования (Рисунок 1.3).Проецирование, при котором проецирующие лучи, проходящие через каждую точку объекта, параллельно выбранному направлению проецирования P, называется параллельным.

Рисунок 1.3 – Метод параллельного проецирования

Введём обозначения:

Введём обозначения:

Р – направление проецирования;

π1 – горизонтальная плоскость проекций;

A, B – объекты проецирования – точки;

А1 и В1 – проекции точек А и В на плоскость проекций π1.

Параллельной проекцией точки называется точка пересечения проецирующей прямой, параллельной заданному направлению проецирования  Р, с плоскостью проекций π1.

Проведём через точки А и В проецирующие лучи, параллельные заданному направлению проецирования Р. Проецирующий луч проведённый через точку А пересечёт плоскость проекций π1 в точке А1. Аналогично проецирующий луч, проведённый через точку В пересечет плоскость проекций в точке В1. Соединив точки А1 и В1, получим отрезок А1 В1– проекция отрезка АВ на плоскость π1.

1.3. Ортогональное проецирование. Метод Монжа

Если направление проецирования Р перпендикулярно плоскости проекций p1, то проецирование называется прямоугольным (Рисунок 1.4), или ортогональным (греч. ortos – прямой, gonia – угол), если Р не перпендикулярно π1, то проецирование называется косоугольным.

Четырехугольник АА1В1В задаёт плоскость γ, которая называется проецирующей, поскольку она перпендикулярна к плоскости π1 (γ⊥π1). В дальнейшем будем использовать только прямоугольное проецирование.

Рисунок 1.4 – Ортогональное проецирование

Рисунок 1.5- Монж, Гаспар (1746-1818)

Интерактивная модельПринцип ортогонального проецирования

Основоположником ортогонального проецирования считается французский учёный Гаспар Монж (Рисунок 1.5).

До Монжа строители, художники и учёные обладали довольно значительными сведениями о проекционных способах, и, всё же, только Гаспар Монж является творцом начертательной геометрии как науки.

Гаспар Монж родился 9 мая 1746  года в небольшом городке Боне (Бургундия) на востоке Франции в семье местного торговца.

Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия.

Его второй сын, Луи, стал профессором математики и астрономии, младший — Жан также профессором математики, гидрографии и навигации. Гаспар Монж получил первоначальное образование в городской школе ордена ораторианцев. Окончив её в 1762 году лучшим учеником, он поступил в колледж г.

Лиона, также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики. Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и вычерчивания линий были изобретены самим составителем.

Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров, но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.

В 1770 году в возрасте 24-х лет Монж занимает должность профессора одновременно по двум кафедрам — математики и физики, и, кроме того, ведёт занятия по резанию камней.

Начав с задачи точной резки камней по заданным эскизам применительно к архитектуре и фортификации, Монж пришёл к созданию методов, обобщённых им впоследствии в новой науке – начертательной геометрии, творцом которой он по праву считается.

Учитывая возможность применения методов начертательной геометрии в военных целях при строительстве укреплений, руководство Мезьерской школы не допускало открытой публикации вплоть до 1799 года, книга вышла под названием Начертательная геометрия (Géométrie descriptive) (стенографическая запись этих лекций была сделана в 1795 году).

Изложенный в ней подход к чтению лекций по этой науке и выполнению упражнений сохранился до наших дней. Еще один значительный труд Монжа – Приложение анализа к геометрии (L’application de l’analyse à la géometrie, 1795) – представляет собой учебник аналитической геометрии, в котором особый акцент делается на дифференциальных соотношениях.

В 1780 был избран членом Парижской академии наук, в 1794 стал директором Политехнической школы. В течение восьми месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798–1801). Наполеон пожаловал ему титул графа, удостоил многих других отличий.

Метод изображения объектов по Монжу заключается в двух основных моментах:

1. Положение геометрического объекта в пространстве, в данном примере точки А, рассматривается относительно двух взаимно перпендикулярных плоскостей π1 и π2 (Рисунок 1.6).

Они условно разделяют пространство на четыре квадранта. Точка А расположена в первом квадранте. Декартова система координат послужила основой для проекций Монжа. Монж заменил понятие координатных осей проекций на линию пересечения плоскостей проекций (ось проекций) и предложил совместить координатные плоскости в одну путем поворота их вокруг координатных осей.

Рисунок 1.6 – Модель построения проекций точки

Интерактивная модельОртогональные проекции точки на две плоскости проекции

π1 – горизонтальная (первая) плоскость проекций

π2 – фронтальная (вторая) плоскость проекций

π1∩π2 — ось проекций (обозначим π2/π1)

Рассмотрим пример проецирования точки А на две взаимно перпендикулярные плоскости проекций π1 и π2.

Опустим из точки А перпендикуляры (проецирующие лучи) на плоскости π1 и π2 и отметим их основания, то есть точки пересечения этих перпендикуляров (проецирующих лучей) с плоскостями проекций.

 А1 – горизонтальная (первая) проекция точки А;А2 – фронтальная (вторая) проекция точки А; АА1 и АА2 – проецирующие прямые. Стрелки показывают направление проецирования на плоскости проекций π1 и π2.

Такая система позволяет однозначно определить положение точки относительно плоскостей проекций π1 и π2:

АА1⊥π1

А2А0⊥π2/π1 АА1 = А2А0 — расстояние от точки А до плоскости π1

АА2⊥π2

А1А0⊥π2/π1 АА2 = А1А0 — расстояние от точки А до плоскости π2

2. Совместим поворотом вокруг оси проекций π2/π1 плоскости проекций в одну плоскость (π1 с π2), но так, чтобы изображения не накладывались друг на друга, (в направлении α, Рисунок 1.6), получим изображение, называемое прямоугольным (ортогональным) чертежом (Рисунок 1.7):

Рисунок 1.7 – Ортогональный чертеж

Прямоугольный или ортогональный носит название  эпюр Монжа.

Прямая А2А1 называется линией проекционной связи, которая соединяет разноимённые проекции точки (А2  — фронтальную и А1 — горизонтальную) всегда перпендикулярна оси проекций (оси координат)  А2А1⊥π2/π1. На эпюре отрезки, обозначенные фигурными скобками, представляют собой:

  • А0 А1 – расстояние от точки А до плоскости π2, соответствующее координате yА;
  • А0 А2 – расстояние от точки А до плоскости π1, соответствующее координате zА.

1.4. Прямоугольные проекции точки. Свойства ортогонального чертежа

1. Две прямоугольные проекции точки лежат на одной линии проекционной связи, перпендикулярной к оси проекций.

2. Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.

Убедимся в справедливости последнего утверждения, для чего повернём плоскость π1 в исходное положение (когда π1⊥π2).

Для того, чтобы построить точку А необходимо из точек А1 и А2 восстановить проецирующие лучи, а фактически – перпендикуляры к плоскостям π1и π2, соответственно.

Точка пересечения этих перпендикуляров фиксирует в пространстве искомую точку А. Рассмотрим ортогональный чертеж точки А (Рисунок 1.8).

Рисунок 1.8 – Построение эпюра точки

Интерактивная модельОртогональные проекции точки на три плоскости проекции

Введём третью (профильную) плоскость проекций π3 перпендикулярную π1 и π2 (задана осью проекций π2/π3).

Расстояние от профильной проекции точки до вертикальной оси проекций А‘0A3 позволяет определить расстояние от точки А до фронтальной плоскости проекций π2.

Известно, что положение точки в пространстве можно зафиксировать относительно декартовой системы координат с помощью трёх чисел (координат) A(XA; YA; ZA) или относительно плоскостей проекций с помощью её двух ортогональных проекций (A1=(XA; YA); A2=(XA; ZA)).

На ортогональном чертеже по двум проекциям точки можно определить три её координаты и, наоборот, по трём координатам точки, построить её проекции (Рисунок 1.9, а и б).

а                                                                                   б

Рисунок 1.9 – Построение эпюра точки по её координатам

По расположению на эпюре проекций точки можно судить о её расположении в пространстве:

  • если на эпюре горизонтальная проекция точки А — А1 лежит под осью координат X , а фронтальная — А2 – над осью X, то можно говорить, что точка А принадлежит 1-му квадранту;
  • если на эпюре горизонтальная проекция точки А — А1 лежит над осью координат X, а фронтальная — А2 – под осью X, то точка А принадлежит 3-му квадранту;
  • если на эпюре горизонтальная и фронтальная проекции точки А — А1 и А2 лежат над осью X, то точка А принадлежит 2-му квадранту;
  • если на эпюре горизонтальная и фронтальная проекции точки А — А1 и А2 лежат под осью X, то точка А принадлежит 4-му квадранту;
  • если на эпюре проекция точки совпадает с самой точкой, то значит – точка принадлежит плоскости проекций;
  • точка, принадлежащая плоскости проекций или оси проекций (оси координат), называется точкой частного положения.

Для определения в каком квадранте пространства расположена точка, достаточно определить знак координат точки.

Зависимости квадранта положения точки и знаков координат XYZI+++II++III+IV++

Упражнение

Построить ортогональные проекции точки с координатами А (60, 20, 40) и определить в каком квадранте расположена точка .

Решение задачи: по оси OX отложить значение координаты XA=60, затем через эту точку на оси OX восстановить линию проекционной связи, перпендикулярную к OX, по которой вверх отложить значение координаты ZA=40, а вниз – значение координаты YA=20 (Рисунок 1.10). Все координаты положительные, значит точка расположена в I квадранте.

  
Рисунок 1.10 – Решение задачи

1.5. Задачи для самостоятельного решения

1. По эпюру определите положение точки относительно плоскостей проекций (Рисунок 1.11).

Рисунок 1.11

2. Достройте недостающие ортогональные проекции точек А, В, С на плоскости проекций π1, π2, π3 (Рисунок 1.12).

Рисунок 1.12

3. Постройте проекции точки:

  • Е, симметричной точке А относительно плоскости проекций π1;
  • F, симметричной точке В относительно плоскости проекций π2;
  • G, симметричной точке С относительно оси проекций π2/π1;
  • H, симметричной точке D относительно биссекторной плоскости второго и четвертого квадрантов.

4. Постройте ортогональные проекции точки К, расположенной во втором квадранте и удаленной от плоскостей проекций π1 на 40 мм, от π2 — на 15 мм.

По вопросам репетиторства по начертательной геометрии, вы можете связаться любым удобным способом в разделе Контакты. Возможно очное и дистанционное обучение по Skype: 1000 р./ак.ч.

Источник: https://cadinstructor.org/ng/lectures/1-metody-proecirovaniya/

Метод начертательной геометрии. Виды проецирования

Методы проецирования

Дата последнего обновления файла 04.02.2016

Изображения на плоскости получают методом проецирования. Аппарат проецирования представлен на рисунке 1.

Рисунок 1. Аппарат проецирования

Объект проецирования — точка А. Через точку А проходит проецирующий луч i с направлением к картинной плоскости, называемой плоскостью проекций.

Точка пересечения проецирующего луча с плоскостью проекций называется проекцией точки. Обозначение проекции точки должно содержать индекс плоскости проекций.

Например, при проецировании на плоскость Пn проекция точки будет обозначена — Аn.

Виды проецирования

Различают центральное и параллельное проецирование. В первом случае источник лучей находится в обозримом пространстве — точка S собственная, во втором — источник лучей расположен в бесконечности.

Схемы центрального и параллельного проецирования приведены соответственно на рисунках 2 и 3.

Модель центрального проецирования — пирамида (рисунок 4) или конус; модель параллельного проецирования — призма (рисунок 5) или цилиндр.

Рисунок 2. Схема центрального проецирования

Проецированием на одну плоскость проекций получается изображение, которое однозначно не определяет форму и размеры предмета.

На рисунке 1 проекция точки А — Аn не определяет положение самой точки в пространстве, поскольку по одной проекции невозможно определить расстояние, на котором точка находится от плоскости П.

Наличие только одной проекции создает неопределенность изображения. В таких случаях, когда невозможно воспроизвести пространственный образ (оригинал) предмета, говорят о необратимости чертежа.

Рисунок 3. Схема параллельного проецирования
Рисунок 4. Модель центрального проецирования (пирамида)

Рисунок 5. Модель параллельного проецирования (призма)

Для исключения неопределенности объекты проецируют на две, три и более плоскостей проекций. Ортогональное проецирование на две плоскости предложил французский геометр Гаспар Монж (ХVIII век). Метод Монжа представлен на рисунке 6,а,б,в (а — наглядное изображение точки в двугранном угле, б — комплексный чертеж точки, в — восстановление объекта, точки А, в пространстве по ее проекциям).

Рисунок 6. Проецирование точки: а — образование проекций пространственной точки А; б — чертеж точки А;

в — восстановление пространственного образа точки А по проекциям А1 и А2

Инвариантные свойства параллельных проекций:

  • проекция точки есть точка;
  • проекция прямой в общем случае прямая;
  • проекции взаимно параллельных прямых в общем случае — параллельные прямые;
  • проекции пересекающихся прямых — пересекающиеся прямые, при этом точки пересечения проекций прямых лежат на одном перпендикуляре к оси проекций;
  • если плоская фигура занимает положение, параллельное плоскости проекций, то она проецируется на эту плоскость в конгруэнтную фигуру.

Различают косоугольные и прямоугольные параллельные проекции. Если проецирующие лучи направлены к плоскости проекций под углом, отличным от прямого, то проекции называют косоугольными. Если проецирующие лучи перпендикулярны к плоскости проекций, то полученные проекции называют прямоугольными. Для прямоугольных проекций используют термин ортогональные от греческого ortos — прямой.

При ортогональном проецировании в пространство вводят две или три взаимно перпендикулярные плоскости, которым присваивают следующие названия и обозначения:

  • горизонтальная плоскость проекций — П1
  • фронтальная плоскость проекций — П2
  • профильная плоскость проекций — П3

Плоскости проекций бесконечны и, пересекаясь, делят пространство на восемь частей — октантов, как показано на рисунке 7.

Рисунок 7. Три взаимно перпендикулярные плоскости проекций П1, П2 и П3 делят пространство на восемь частей (октантов)

В практике построения изображений чаще всего используют первый октант, который далее будем называть трехгранным углом. Наглядное изображение трехгранного угла приведено на рисунке 8.

Рисунок 8. Трехгранный угол, первый октант

При пересечении плоскостей проекций образуются прямые линии — оси проекций:

ось X (икс) — ось абсцисс ось Y (игрек) — ось ординат Ось Z (зет) — ось аппликат

Если оси проградуировать, то получится координатная система, в которой легко построить объект по заданным координатам. Система прямоугольных координат была предложена Декартом (ХVIIIв.). Ортогональным проекциям присущи все свойства параллельных проекций. На рисунке 9 показано преобразование трехгранного угла и образование комплексного чертежа точки А.

Рисунок 9. Преобразование трехгранного угла и образование чертежа точки в трех проекциях

а — наглядное изображение, б — развертка трехгранного угла, в — чертеж точки

На рисунке 10 приведен комплексный чертеж прямого кругового конуса, отмечена точка S — вершина конуса. Оси проекций X, Y, Z не показаны, что часто используется в практике построения чертежей.

Рисунок 10. Пример чертежа конуса и принадлежащей точки S. Чертеж выполнен без указания осей проекций

Литература:

  1. В.Н. Быкова Г.Д. Мефодьева Л.Я. Мефодьева В.И. Сединин Инженерная и компьютерная графика: Учебное поcобие — Новосибирск: СибГУТИ, 2010
  2. В.С. Дукмасова, В.А. Краснов МЕТОДИКА РЕШЕНИЯ ЗАДАЧ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ: Учебное поcобие — Челябинск: Изд. ЮУрГУ, 2006

Вместе со статьей «Метод начертательной геометрии. Виды проецирования» читают:

Задачи начертательной геометрии
http://digteh.ru/InjGraf/Zad/

Геометрические образы пространства и их обозначения
http://digteh.ru/InjGraf/Obraz/

Поверхность как объект пространства
http://digteh.ru/InjGraf/Poverhn/

Пересечение поверхности плоскостью
http://digteh.ru/InjGraf/peresech_poverhn_plos/

Авторы Быкова В. Н. Мефодьева Л Я All rights reserved. 2001 … 2019

Предыдущие версии сайта: http://neic.nsk.su/~mavr

http://digital.sibsutis.ru/

Источник: https://DigTeh.ru/InjGraf/Proec/

Проецирование как метод графического отображения формы предмета. Методы проекцирования — Черчение

Методы проецирования

Проецирование — это процесс получения проекций предмета на какой-либо поверхности (плоской, цилиндрической, сфериче­ской, конической) с помощью проецирующих лучей.

Проецирование может осуществляться различными методами.

Методом проецирования называется способ получения изо­бражений с помощью определенной, присущей только ему сово­купности средств проецирования (центра проецирования, на­правления проецирования, проецирующих лучей, плоскостей (по­верхностей) проекций), которые определяют результат — соот­ветствующие проекционные изображения и их свойства.

Для того чтобы получить любое изображение предмета на плоскости, необходимо расположить его перед плоскостью про­екций и из центра проецирования провести воображаемые про­ецирующие лучи, пронизывающие каждую точку поверхности предмета.

Пересечение этих лучей с плоскостью проекций дает множество точек, совокупность которых создает изображение предмета, называемое его проекцией.

Это общее определение рассмотрим на примере проецирования точки, прямой, треуголь­ника и треугольной призмы на плоскость проекций H.

Проецирование точки (рис. 52, а). Возьмем в пространстве произвольную точку А и расположим ее над плоскостью проек­ций H.

Проведем через точку А проецирующий луч так, чтобы он пересек плоскость H в некоторой точке а, которая будет являться проекцией точки А.

(Здесь и в дальнейшем будем обозначать точки, взятые на предмете, прописными буквами чертежного шрифта, а их проекции — строчными.) Как видим, методом проецирования можно получить проекцию нульмерного объекта— точки.

Проецирование прямой (рис. 52, б). Представим себе прямую как совокупность точек. Используя метод проецирования, прове­дем множество параллельных проецирующих лучей через точки, из которых состоит прямая, до пересечения их с плоскостью про­екций. Полученные проекции точек составят проекцию заданной прямой — одномерного объекта.

Проецирование треугольника (рис. 52, в). Расположим тре­угольник ABC перед плоскостью H. Приняв вершины треуголь­ника за отдельные точки А, В, С, спроецируем каждую из них на плоскость проекций. Получим проекции вершин треугольника — a, b, с.

Последовательно соединив проекции вершин (а и b; b и с; с и а), получим проекции сторон треугольника (ab, bc, ca).

Часть плоскости, ограниченная изображением сторон треугольника abc, будет являться проекцией треугольника ABC на плоскости H Следовательно, методом проецирования можно получить проек­цию плоской фигуры — двухмерного объекта.

Проецирование призмы (рис. 52, г). Для примера возьмем наклонную треугольную призму и спроецируем ее на плоскость проекций H.

В результате проецирования призмы на плоскость H получают изображения (проекции) ее оснований — треуголь­ников — abc и a1b1c1 и боковых граней — прямоугольников abb1a1 и bcc1b1.

Так в результате проецирования на плоскости H получают проекцию треугольной призмы. Следовательно, с помощью метода проецирования можно отобразить любой трех­мерный объект.

Рис. 52. Проецирование нуль-, одно-, двух- и трехмерных объектов: а — точка;
б — прямая; в — треугольник; г — призма

Таким образом, методом проецирования можно отобразить на плоскости любой объект (нуль-, одно-, двух- и трехмерный). В этом отношении метод проецирования является универсальным.

Сущность проецирования легче понять, если вспомнить получение изображения в кинотеатре: световой поток лампы кинопроектора проходит через пленку и отбрасывает изображение на полотно. При этом изображение на киноэкране будет в несколько раз больше изображения на кинопленке.

Существует центральное (или перспективное) и параллельное проецирование. Параллельное проецирование бывает прямо­угольным (ортогональным) или косоугольным (табл. 5).

5. Методы проецирования

Центральное проецирование (перспектива) характеризуется тем, что проецирующие лучи исходят из одной точки (S), назы­ваемой центром проецирования. Полученное изображение назы­вается центральной проекцией.

Перспектива передает внешнюю форму предмета так, как воспринимает его наше зрение.

При центральном проецировании, если предмет находит­ся между центром проецирования и плоскостью проекций, размеры проекции будут больше оригинала; если предмет расположен за плоскостью проекций, то размеры проекции станут меньше действи­тельных размеров изображаемого предмета.

Параллельное проецирование характеризуется тем, что про­ецирующие лучи параллельны между собой. В этом случае предполагается, что центр проецирования (S) удален в бесконеч­ность.

Изображения, полученные в результате параллельного про­ецирования, называются параллельными проекциями.

Если проецирующие лучи параллельны между собой и пада­ют на плоскость проекций под прямым углом, то проецирование называется прямоугольным (ортогональным), а полученные проекции — прямоугольными (ортогональными).

Если проеци­рующие лучи параллельны между собой, но падают на плоскость Проекций под углом, отличным от прямого, то проецирование на­зывается косоугольным, а полученная проекция — косоугольной.

При проецировании объект располагают перед плоскостью про­екций таким образом, чтобы на ней получилось изображение, несущее наибольшую информацию о форме.

Источник: http://cherch.ru/graficheskoe_otobrazhenie/proetsirovanie_kak_metod_graficheskogo_otobrazheniya_formi_predmeta.html

Refy-free
Добавить комментарий