Математическая логика

Математическая логика (стр. 1 из 7)

Математическая логика

Введение

Тема контрольной работы «Математическая логика».

БУЛЬ или БУЛ, а также БУУЛ, Джордж (1815-1864) – английский математик, который считается основоположником математической логики.

Математическая логика – это раздел математики, посвященный анализу методов рассуждений, при этом в первую очередь исследуются формы рассуждений, а не их содержание, т.е. исследуется формализация рассуждений.

Формализация рассуждений восходит к Аристотелю. Современный вид аристотелева (формальная) логика приобрела во второй половине XIX века в сочинении Джорджа Буля “Законы мысли”.

Интенсивно математическая логика начала развиваться в 50-е годы XX века в связи с бурным развитием цифровой техники.

1. Элементы математической логика

Основными разделами математической логики являются исчисление высказываний и исчисление предикатов.

Высказывание – есть предложение, которое может быть либо истинно, либо ложно.

Исчисление высказываний – вступительный раздел математической логики, в котором рассматриваются логические операции над высказываниями.

Предикат – логическая функция от п переменных, которая принимает значения истинности или ложности.

Исчисление предикатов – раздел математической логики, объектом которого является дальнейшее изучение и обобщение исчисления высказываний.

Теория булевых алгебр (булевых функций) положена в основу точных методов анализа и синтеза в теории переключательных схем при проектировании компьютерных систем.

1.1 Основные понятия алгебры логики

Алгебра логики – раздел математической логики, изучающий логические операции над высказываниями.

В алгебре логики интересуются лишь истинностным значением высказываний. Истинностные значения принято обозначать:

1 (истина) 0 (ложь).

Каждой логической операции соответствует функция, принимающая значения 1 или 0, аргументы которой также принимают значения 1 или 0.

Такие функции называются логическими или булевыми, или функциями алгебры логики (ФАЛ). При этом логическая (булева) переменная x может принимать только два значения:

.

Таким образом,

— логическая функция, у которой логи-ческие переменные являются высказываниями. Тогда сама логическая функция является сложным высказыванием.

В этом случае алгебру логики можно определить, как совокупность множества логических функций с заданными в нем всевозможными логическими операциями. Таким логическим операциям, как конъюнкция (читается И), дизъюнкция (ИЛИ), импликация, эквивалентность, отрицание (НЕ), соответствуют логические функции, для которых приняты обозначения

(&, ·), ~, – ( ), и имеет место таблица истинности:

Это табличный способ задания ФАЛ. Наряду с ними применяется задание функций с помощью формул в языке, содержащем переменные x, y, …, z (возможно индексированные) и символы некоторых конкретных функций – аналитический способ задания ФАЛ.

Наиболее употребительным является язык,содержащий логические символы

~, –. Формулы этого языка определяются следующим образом:

1) все переменные есть формулы;

2) если P и Q – формулы, то

P ~ Q, — фор-мулы.

Например, выражение

~ — формула. Если переменным x, y, z придать значения из двоичного набора 0, 1 и провести вычисления в соответствии с операциями, указанными в формуле, то получим значение 0 или 1.

Говорят, что формула реализует функцию. Так формула

~ реализует функцию h(x, y, z):

Пусть P и Q – формулы, которые реализуют функции f (x1, x2, …, xn) и g (x1, x2, …, xn).

Формулы равны: P = Q, если функции f и g совпадают, т.е. совпадают их таблицы истинности.

Алгебра, основным множеством которой является все множество логических функций, а операциями – дизъюнкция, конъюнкция и отрицание, называется булевой алгеброй логических функций.

Приведем законы и тождества, определяющие операции

– и их связь с операциями , ~:

1. Идемпотентность конъюнкции и дизъюнкции:

.

2. Коммутативность конъюнкции и дизъюнкции:

.

3. Ассоциативность конъюнкции и дизъюнкции:

.

4. Дистрибутивность конъюнкции относительно дизъюнкции и дизъюнкции относительно конъюнкции:

.

5. Двойное отрицание:

.

6. Законы де Моргана:

= , = .

7. Склеивание:

.

8. Поглощение

.

9. Действия с константами 0 и 1:

.

10. Законы Блейка-Порецкого:

.

11. Связь импликации

с отрицанием – и дизъюнкцией : .

12. Связь эквивалентности ~ с дизъюнкцией

, конъюнкцией и отрицанием: ~ y = .

Всякая функция алгебры логики может быть реализована некоторой формулой языка с символами

~, –.

1.2 Дизъюнктивные и конъюнктивные нормальные формы (ДНФ и КНФ)

ДНФ и КНФ играют особую роль в алгебре логики и ее приложениях. Введем обозначение:

Так определенная переменная или ее отрицание называется первичным термом.

Формула вида

, где — двоичный набор, а среди переменных нет одинаковых, называется элементарной конъюнкцией.

Всякая дизъюнкция элементарных конъюнкций называется дизъюнктивной нормальной формой (ДНФ):

Источник: https://mirznanii.com/a/313885/matematicheskaya-logika

Логика математическая

Математическая логика

Математическая логика — это раздел современной формальной логики (см. Логика формальная), в котором логические выводы исследуются посредством логических исчислений на основе математического языка, аксиоматизации и формализации. В качестве другого названия современного этапа в развитии логики (см.

 Логика) используется также термин «символическая логика» (см. Логика символическая). Иногда термин «математическая логика» употребляется в более широком смысле, охватывая исследование свойств дедуктивных теорий, именуемое металогикой (см. Металогика) или метаматематикой.

В целом, определение «математическая логика» подчёркивает её сходство с математикой, основывающееся, прежде всего, на методах построения логических исчислений на основе строгого символического языка, аксиоматизации и формализации.

Они позволяют избежать двусмысленной и логической неясности естественного языка, которым пользовалась при описании правильного мышления традиционная логика, развивавшаяся в рамках философии (см. Философия).

Математические методы дали логике такие преимущества, как высокая точность формулировок, возможность изучения более сложных, с точки зрения логической формы, объектов.

Многие проблемы, исследуемые в математической логике, вообще невозможно было сформулировать с использованием только традиционных методов.

Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном (формализованном) языке. Такие точные языки имеют две составляющие: синтаксис (см. Синтактика) и семантику (см. Семантика).

Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет.

Уже в Античности (в частности Аристотелем) широко применялись буквенные обозначения для переменных. Идея построения универсального языка для всей математики, для формализации на базе такого языка математических доказательств и вообще любых рассуждений выдвигалась в XVII веке Г. В. Лейбницем.

Но только к середине XIX века стало очевидным, что существующая логическая парадигма, а именно аристотелевская силлогистика (см. Силлогистика), уже не отвечает требованиям развития науки того времени.

С одной стороны, значительные успехи абстрактной алгебры в особенности в теории групп позволили перенести алгебраические методы на другие области науки. Это с успехом проделала английская школа, основоположником которой можно считать А.

 де Моргана, который в 1847 году опубликовал книгу «Formal Logic; or The Calculus of Inference, Necessary and Probable». Им открыты названные в его честь законы де Моргана, разработана теория отношений и в 1838 определено понятие математической индукции.

Однако наибольшую известность получили работы Дж. Буля. В 1847 году он публикует брошюру «Mathematical Analaysis of Logic», а в 1854 — свой главный труд по логике «An Investigation into the Laws of Thought, on which are Founded the Mathematical Theories of Logic and Probabilities». Как и де Морган, Дж.

 Буль был одним из тех математиков из Кембриджа, которые признали чисто абстрактную природу алгебры. Они заметили, что простейшие операции над множествами подчиняются законам коммутативности, ассоциативности и дистрибутивности.

Оставалось только провести аналогию между объединением и сложением, пересечением и умножением, пустым классом и нулём, универсальным классом и единицей. Работы Буля 1847 и 1854 годов можно считать началом алгебры логики (см. Алгебра логики), первоначальный этап развития которой был завершён Э.

 Шрёдером в трёхтомной монографии «Vorlesungugen uber die Algebra der Logik» (1890–1905).

С другой стороны, возникновение и развитие математической логики связано с работами Г. Фреге и Ч. С. Пирса.

После того, как Фреге в 1879 и Пирс в 1885 году ввели в язык алгебры логики предикаты, предметные переменные и кванторы, возникла реальная возможность построения системы логики в виде логического исчисления, что и было сделано Фреге, который по праву считается основателем математической логики в её современном понимании.

Пытаясь реализовать идеи Лейбница, Фреге в своём труде «Begriffsschrift» предложил символическую запись для строгих рассуждений. Хотя его нотация сейчас совсем не используется (например, формулы рисовали в виде двумерного дерева), Фреге в действительности впервые построил исчисление предикатов.

Исчисление предикатов есть формальная система, состоящая из двух частей: символического языка и логики предикатов (см. Логика предикатов). Кроме этого для исчисления предикатов Фреге даёт строгое определение понятия «доказательство», которое является общепринятым и по сей день.

Основы современной логической символики были разработаны Дж. Пеано, чьи интересы, как и Фреге, концентрировались вокруг оснований математики и развития формально-логического языка.

Его широко известный труд «Formulaire de mathématiques», опубликованный (в соавторстве) в 1894–1908 годах, был нацелен на развитие математики в её целостности, исходя из некоторых фундаментальных постулатов. Логическая запись Пеано была принята, хотя и частично модифицирована, А. Н. Уайтхедом и Б.

 Расселом в их широко известной трёхтомной «Principia Mathematica» (1910–1913), а затем воспринята Д. Гилбертом. Таким образом, в логику был введён символический язык.

Создание такого искусственного языка и с его помощью таких объектов, как логические исчисления, строго формализующие различные теории в виде некоторого конечного списка аксиом и правил вывода, было вызвано, в первую очередь, потребностями математики, ставившей проблемы, для решения которых средства традиционной логики были непригодны.

Основным стимулом развития математической логики в начале XX века была проблема оснований математики. К. Вейерштрасс, Р. Дедекинд и Г. Кантор показали, что в качестве фундамента всей классической математики может рассматриваться арифметика целых чисел.

Дедикинд и Пеано аксиоматизировали арифметику, а Фреге дал определение натурального числа как множества всех равномощных множеств. Таким образом, вся математика сводилась к теории множеств.

Рефлексия над феноменом множеств привела к обнаружению ряда парадоксов в теории множеств, ответом на которые стало развитие четырёх направлений в основаниях математики:

  1. Логицизм (вся математика может быть дедуцирована из чистой логики без использования каких-либо специфических понятий, таких, как число или множество).
  2. Интуиционизм (нужна новая логика).
  3. Теоретико-множественный платонизм в виде аксиоматической теории множеств ZF (вводятся ограничения на образование множеств).
  4. Формализм (программа Гилберта).

Развитие и применение технического аппарата самой логики в первую очередь относится к программе Д.

 Гилберта (начиная с 1904 года), где была поставлена главная задача: найти строгое основание для математики посредством доказательства её непротиворечивости, то есть доказательства того факта, что в ней недоказуема никакая формула вида A вместе с формулой ~ А.

Для этого потребовалось развить теорию доказательств, после чего, считал Гилберт, используя только финитные методы, можно будет доказать непротиворечивость теории множеств и самой теории действительных чисел и таким образом решить проблему оснований математики. Однако результат К.

 Гёделя о неполноте арифметики (1931) убедительно показал, что программа Гилберта невыполнима. Теорема Гёделя о неполноте утверждает, что всякая достаточно богатая теория необходимо содержит утверждения, которые нельзя ни доказать, ни опровергнуть, не опровергнув самой теории.

С 20-х годов XX века начинается современный этап развития математической логики. Он связан с применением точных методов при изучении формальных аксиоматических задач.

Суть их состоит в описании рассматриваемой теории на базе строгого логико-математического языка (формализация), с последующими процедурами логического анализа теории, а именно с точки зрения непротиворечивости (например, таких теорий, как элементарная геометрия, арифметика, анализ достаточно надёжных оснований) и полноты. Основным объектом современной математической логики являются исчисления. В качестве их компонентов выступают: язык (формальный); аксиомы; правила вывода. На их основе стало возможным дать точное определение доказательства, получить точные утверждения о невозможности доказательства тех или иных предложений теории.

Обширным полем деятельности для современной математической логики является теория рекурсии, которая в первую очередь имеет дело с проблемой разрешимости: доказуема или нет формула A из некоторого множества посылок. Эти исследования привели к теориям вычислимости, к созданию компьютерных программ автоматического поиска доказательств.

Решение проблемы разрешимости послужило основным стимулом для создания теории алгоритмов. Формулировка тезиса Чёрча — Тьюринга, утверждающего, что понятие общерекурсивной функции является уточнением интуитивного понятия алгоритма, стало наиболее важным достижением математической логики.

Только после уточнения понятия алгоритма выяснилось, что в хорошо известных разделах математики существуют алгоритмически неразрешимые проблемы.

Важное место в современной математической логике занимает теория моделей (см.

 Теория моделей), которая изучает фундаментальные связи между синтаксическими свойствами множеств предложений формального языка, с одной стороны, и семантическими свойствами их моделей, с другой; и вообще, изучаются соотношения между моделями и теориями, а также преобразование моделей.

Зачастую модели используются как инструмент для того, чтобы показать, что некоторая формула A не может быть дедуцирована из определённого множества постулатов или, если A есть аксиома, то показать недоказуемость A из остальных аксиом системы, к которой A принадлежит (если это возможно). Тогда A является независимой аксиомой.

Наряду с этим стало очевидно, что те впечатляющие результаты, которые были получены средствами математической логики, и в первую очередь в области оснований математики, привели к некоторому гипостазированию функции и предмета самой этой логики. Так, в предисловии к «Handbook of Mathematical Logic» (1977) Дж.

 Барвайс пишет: «Математическая логика традиционно подразделяется на четыре раздела: теория моделей, теория множеств, теория рекурсии и теория доказательств». В свою очередь в «Encyclopedia Britanica» (CD–1998), уже применительно к математической логике, четыре указанных раздела названы «четырьмя главными областями исследования».

Более точно было бы говорить о применении технического аппарата логики в данных областях, поскольку теория множеств и теория рекурсии сами по себе являются самостоятельными математическими дисциплинами и не являются частью математической логики.

Теория доказательств для некоторых математиков-логиков превратилась чуть ли не в «метаматематику» (термин Гилберта), а теория моделей давно вышла за пределы логической семантики.

Развитие современной логики показывает, что термин «математическая логика» постепенно сужается и часто используется для обозначения области исследования тех типов рассуждений, которыми пользуются математики, тем самым приобретая всё большее методологическое и прикладное значение, прежде всего в рамках вычислительной математики и связанных областей. В целом, символизация и представление различных логических теорий в виде исчислений стало обычным делом и поэтому строго разделить современные логические исследования на относящиеся к математической логике и не относящиеся к ней порой просто невозможно.

Источник: https://gtmarket.ru/concepts/7027

Refy-free
Добавить комментарий