История развития геометрии как науки

Возникновение геометрии

История развития геометрии как науки

Возникновение геометрии.

   Слово геометрия греческого происхождения. В буквальном смысле оно означает «землемерие». Возникла геометрия в Египте более 4000 лет назад.

Вот что пишет о зарождении геометрии греческий историк Геродот, живший около 2500 лет назад: «Сезострит, египетский царь, произвел деление земель, отмерив каждому египтянину участок по жребию, сообразно этим участкам с их владельцев ежегодно взимал налоги.

  Если Нил заливал чей-нибудь участок, то пострадавший обращался к царю и докладывал о случившимся. Тогда царь посылал землемеров(геометров), они измеряли на сколько уменьшился участок и сообразно этому понижали налог. Вот откуда пришла геометрия и перешла из этой страны в Грецию».

  Об этом же пишет и другой греческий ученый Евцем Родовский (4в до н. э.) : «Геометрия была открыта египтянами и возникла при измерении земли.

Это измерение было им необходимо вследствие разлива реки Нил, постоянно смывавшего границы. Нет ничего удивительного в том, что эта наука, как и другие,  возникла из потребностей человека.

Всякое возникающее знание  из несовершенного состояния  переходит в совершенное».

  Нельзя думать, что не будь Нила с его мощными разливами – не было бы геометрии.

Людям нужно было определять расстояние между точками, площади участков и объемы тел (употребляемых, например, при постройке жилищ) и они создали бы геометрию не в Египте, так в Индии, не и Индии, так в Китае.

Да оно так и было. Потребности жизни заставляли находить людей способы измерения площадей и объемов в разных странах и в разное время.

   Египет и Греция

  В течение многих веков постепенно накапливали древние египтяне различные научные знания, в том числе знания по геометрии. Они сумели довольно  точно определять площади фигур, объемы некоторых тел, решать некоторые другие геометрические задачи.

  Но геометрии, как науки, у них не было. У них было много различных правил — рецептов, не соединенных между собой общей идеей, не приведенных в единую стройную систему. Этими рецептами владели чаще всего жрецы храмов, которые держали их в секрете.

  Цари древнего Египта постоянно вели долгие изнурительные войны, которые ослабляли экономическую мощь страны. Были периоды, когда Египет завоевывался разными другими народами – это были периоды жестокой эксплуатации страны – наука и искусство пришли в упадок.

  Но к северу от Египта, уже зародилось новое государство – Греция. Греческие купцы посещали Египет и, возвращаясь, много рассказывали об этой чудесной стране. Вместе с купцами Египет стали посещать ученые. И достижения египетской науки постепенно стали известны древним грекам.

  Но Греки не просто усвоили достижения египтян. Они исправили их ошибки и развивали геометрию дальше. Именно в древней Греции около 2500 лет назад геометрия стала математической наукой.

  В VII веке до н. э. центром математического творчества становится так называемая пифагорийская школа в южной Италии. Здесь были открыты несоизмеримые отрезки, создано учение о подобии, найдены способы построения некоторых правильных многоугольников и многогранников, доказана теорема Пифагора и т. д.

  К 300-м годам до н. э. геометрия становится самостоятельной математической наукой. К этому времени ученый Евклид написал книгу, называемую им «Начала», написание которой относится к 325-300 годам до н. э.

  Евклид собрал почти все, что было создано до него, по геометрии и привел в стройную единую систему. Он  взял за основу некоторые положения, так называемые аксиомы, и из них путем последовательных  рассуждений сумел вывести все теоремы геометрии.

«Начала» Евклида более полутора тысяч лет переписывались от руки в Греции, Италии, Египте, Индии, Средней Азии и других странах. С возникновением книгопечатания «Начала» сотни раз перепечатывались на всех языках мира.

Это одна из наиболее распространенных на земном шаре книг.

  Ученые, жившие после Евклида добавили к «Началам» несколько новых теорем, кое-что изменили, но основная масса материала, границы, определяющие ее объем и метод остались прежними. Поэтому геометрия, которую мы изучаем, называется Евклидовой.

   Геометрия на Руси.

  На Руси самое древнее сочинение по арифметике, сохранившееся до нас, написано в 1196 году новгородским монахом Кириком.

Самое древнее сочинение, сохранившееся до наших дней и содержащее геометрические сведения, написано в начале XVII века (вероятно, в 1607 году), оно называлось «Устав ратных дел».

В этом сочинении содержатся правила (рецепты)  для решения задач на определение расстояния до предметов. Никаких теорем или доказательств верности не приводится.

  В других рукописях  («Книга и письма» и другие) даются правила изменения площадей, нахождения расстояний, определение объемов тел. В этих правилах много ошибок и совсем не приводится доказательств.

  Распространению на Руси геометрических знаний препятствовала церковь. Попы боялись, что вместе с книгами с запада в Россию будет проникать католическая религия, поэтому вводили жестокие меры против тех, кто занимался математикой. В одном древнерусском поучении говорится: «богомерзостен перед богом всякий, кто любит геометрию».

  В течении 17 века геометрические знания на Руси распространялись медленно.

  В 18 веке геометрия получила большое распространение. В России была открыты Академия наук, в Москве был открыт университет, во многих городах открывались школы и гимназии, появились учебники геометрии, как отечественные, так и переводные.

  Изучение законов природы немыслимо без знаний математики. Не случайно известный итальянский физик и математик  Галилей сказал так: «Природа говорит языком математики, буквы этого языка – круги, треугольники и иные математические знаки».

  Огромно практическое применение геометрии, трудно указать те отрасли народного хозяйства и науки куда бы не проникла геометрия. Без участия геометрии немыслимо было бы освоение космоса. Геометрия необходима и инженеру, и архитектору, и колхознику.

Источник: https://pandia.ru/text/77/382/36249.php

История развития геометрии как науки (стр. 1 из 3)

История развития геометрии как науки

Муниципальное общеобразовательное учреждение

средняя общеобразовательная школа № 6

округа Муром

Реферат

По геометрии

На тему: история развития геометрии как науки

Подготовила:

Ученица 8 «В» класса

Барскова Екатерина

Проверила:

Учитель математики

Шубина И.Н.

Г. Муром 2011 год

1. Введение ……………………………………………………………………………. 4

2. Первый период…………………………………………………………………… 7

2.1 Геометрия Египта………………………………………………………….. 7

2.2 Геометрия Вавилона……………………………………………………… 8

2.3 Геометрия древней Греции…………………………………………… 9

3. Второй период……………………………………………………………………. 11

3.1 Труды Евклида………………………………………………………………. 11

3.2 Труды Архимеда……………………………………………………………. 12

3.3 Труды Менелая……………………………………………………………… 13

3.4 Труды Апполона……………………………………………………………. 13

4. Третий период……………………………………………………………………. 15

4.1 Труды Эйлера……………………………………………………………….. 15

5. Четвёртый период………………………………………………………… 17

6. Задачи…………………………………………………………………………………. _

6.1 Задачи древности…………………………………………………………. 18

6.2 Современные задачи……………………………………………………. 19

7. Заключение………………………………………………………………………… 20

8. Литература…………………………………………………………………………. 21

Цель работы: узнать, как развивалась наука геометрия, и сравнить решение задач в древние времена и как они решаются сейчас.

Задачи:

1. Изучить литературу об истории науки геометрии.

2. Изучить каждый этап развития.

3. Рассмотреть решение задач в древности.

4. Рассмотреть способы решения современных задач.

5. Сравнить решение задач древности и современности.

Актуальность темы: Геометрия, как и всякая наука, возникла под влиянием жизненных потребностей. Необходимость повседневного удовлетворения их ставит человека перед целым рядом вопросов о форме окружающих его предметов, вычислениях, связанных с землемерием, строительным делом и т.д. Слово «геометрия» означает «землемерие» и ясно указывает на источник его происхождения.

Введение

Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от ge — земля и metrein — измерять)— наука о пространстве, точнее — наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела.

Таково классическое определение геометрии, или, вернее, таково действительное значение классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения.

Развитие геометрии принесло с собой глубоко идущую эволюцию понятия о пространстве.

В том значении, в котором пространство как математический термин широко употребляется современными геометрами, оно уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений.

За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

Геометрия дает общее понятие о геометрической фигуре, под которой понимают не только тело, поверхность, линию или точку, но и любую их совокупность. Геометрия в первоначальном значении есть наука о фигурах, взаимном расположении и размерах их частей, а также о преобразованиях фигур.

Это определение вполне согласуется с определением геометрии как науки о пространственных формах и отношениях.

Действительно, фигура, как она рассматривается в геометрия, и есть пространственная форма; поэтому в геометрии говорят, например, «шар», а не «тело шарообразной формы»; расположение и размеры определяются пространственными отношениями; наконец, преобразование, как его понимают в геометрии, так же есть некоторое отношение между двумя фигурами — данной и той, в которую она преобразуется.

Измерение площадей – одна из самых первых математических задач, возникших в глубокой древности.

Среди самых старых древневавилонских клинописных табличек, смысл которых удалось расшифровать, – а их возраст составляет более четырех тысяч лет, – нашлись таблички с расчетами количества зерна, которое требуется для посева в зависимости от площади поля (при заданных расстояниях между рядами и зернами в ряду). Такие расчеты тогда не казались простыми из-за громоздкого способа обозначений больших чисел, в котором особую роль играли числа 6, 10, 60 (от этой «шестидесятеричной» системы до наших дней сохранился обычай делить окружность на 360 частей и измерять углы в градусах).
Крупнейший древнегреческий историк Геродот (V век до нашей эры) оставил описание того, как египтяне после каждого разлива Нила заново размечали плодородные участки его берегов, с которых ушла вода. По Геродоту, с этого и началась геометрия.

В современном, более общем смысле, геометрия объемлет разнообразные математические теории, принадлежность которых к геометрия определяется не только сходством (хотя порой и весьма отдалённым) их предмета с обычными пространственными формами и отношениями, но также тем, что они исторически сложились и складываются на основе геометрии в первоначальном её значении и в своих построениях исходят из анализа, обобщения и видоизменения её понятий. Геометрия в этом общем смысле тесно переплетается с другими разделами математики и её границы не являются точными.

В развитии геометрии можно указать четыре основных периода, переходы между которыми обозначали качественное изменение геометрии.

Первый — период зарождения геометрия как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества.

Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован.

Самое раннее сочинение, содержащее зачатки геометрии, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое.

Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему.

Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве. Этот процесс привёл, наконец, к качественному скачку.

Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались.

Геометрия Египта

Имеются вполне достоверные сведения о значительном развитии геометрических знаний в Египте более чем за две тысячи лет до нашей эры.

Узкая плодородная полоса земли между пустыней и рекой Нилом ежегодно подвергалась затоплению, и каждый раз разлив смывал границы участков, принадлежавших отдельным лицам.

После спада воды требовалось с возможно большей точностью восстановить эти границы, ибо каждый из участков ценился весьма высоко. Это заставило египтян заниматься вопросами измерения, то есть землемерием.

Помимо этого, они вели развитую торговлю и поэтому нуждались в умении измерять емкость сосудов. Искусство кораблевождения привело их к астрономическим сведениям. Выдающиеся постройки египтян — пирамиды, которые сохранились до нашего времени, свидетельствуют, что их сооружение требовало знания пространственных форм. Все это указывает на чисто опытное происхождение геометрии.

Геометрия Вавилона

К задачам, которые вавилоняне решали алгебраическим и арифметическим методом, относятся и многие задания на определение длин, площадей при делении земельных участков, объемов земляных выемок, хозяйственных построек.

Все решения, встречающиеся в клинописных текстах, ограничиваются простым перечислением этапов вычисления в виде догматических правил: «делай то — то, делай так — то». В дошедших до нас вавилонских табличках имеются задачи абстрактного характера и внешне кажущиеся не связанными с практическими нуждами.

Но это не так: они возникли в результате теоретической обработки условий, первоначально порожденных потребностями практики при межевании земель, возведении стен и насыпей, при строительстве каналов, плотин, оборонительных сооружений и пр.

Сохранилось немало планов земельных угодий, разделенных на участки прямоугольной, трапецеидальной или треугольной форм.

Но соответствующие геометрические фигуры воспринимались ими как абстрактные, так прямоугольник они называли «то, что имеет длину и ширину», трапецию — «лбом быка», сегмент — «полем полумесяца», параллельные прямые — «двойными прямыми». У вавилонян не было таких геометрических понятий как точка, прямая, линия, поверхность, плоскость, параллельность. Измерение производилось при помощи веревки. Геометрические познания вавилонян превышали египетские.

Источник: https://mirznanii.com/a/283479/istoriya-razvitiya-geometrii-kak-nauki

История геометрии

История развития геометрии как науки

Традиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину.

При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида.

Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом.

Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием.

Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637).

Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую.

Этот раздел получил название проективной геометрии. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии.

Геометрия — одна из наиболее древних математических наук. Первые геометрические тексты имеются в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до н.э.).

Еще в древности геометрия превратилась в дедуктивную, строго логическую науку, построенную на основе системы аксиом. Она непрерывно развивалась, обогащалась новыми теоремами, идеями, методами.

Интересы геометров и направления их научных исследований порою менялись в процессе исторического развития этой науки, поэтому нелегко дать точное и исчерпывающее определение, что такое геометрия сегодня, каков ее предмет, содержание и методы.

Евклид

В III в. до н. э. древнегреческий ученый Евклид написал книгу под названием «Начала». В этой книге Евклид подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки.

Написана она была настолько хорошо, что в течение 2000 лет всюду преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида. Продуманное и глубоко логическое изложение геометрии, данное в книге Евклида, привело к тому, что математики не мыслили возможности существования геометрии, отличной от евклидовой. Лишь в XIX в.

благодаря в первую очередь трудам выдающегося русского математика Н. И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной.

Часто идеи, обогащающие математику новыми понятиями и методами, приходят из физики, химии и других разделов естествознания. Типичным примером может служить понятие вектора пришедшее в математику из механики. В отношении неевклидовых геометрий обстоит как раз наоборот: созданные внутри математики эти новые геометрические понятия положили пути создания современной физики.

Много нового появилось со времен Евклида и в самой евклидовой геометрии. Еще в XVII в. благодаря работам французского математика и философа Р. Декарта возник метод координат, ознаменовавший собой революционную перестройку всей математики, и в частности геометрии.

Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так в рамках евклидовой геометрии появилась ее новая ветвь — аналитическая геометрия. В работах математиков XIX в. У. Гамильтона, Г.

Грассмана и других были введены векторы, которые ранее в трудах Архимеда, Г. Галилея и других имели лишь механический смысл, а теперь приобрели права в математике.

Другим важным обогащением, которым геометрия также обязана XIX в., стало создание теории геометрических преобразований, и в частности движений (перемещений). У Евклида движения неявно присутствовали; например, когда он говорил: «Наложим один треугольник на другой таким-то образом», то речь шла в действительности о применении движения, перемещения треугольника.

Пифагорова тройка

Пифагорова тройка из трёх натуральных чисел (x,y,z)удовлетворяет соотношению Пифагора: x2+y2=z2. При этом числа, образующие пифагорову тройку, называются пифагоровыми числами. Треугольник, длины сторон которого равны пифагоровым числам, является прямоугольным. Простейший из них — египетский треугольник со сторонами 3,4,5: 32+42=52.

Некоторые пифагоровы тройки : (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34),(21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14, 48, 50), (30, 40, 50), …Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.

Неевклидова геометрия

В геометрии Евклида имеется аксиома о параллельных, утверждающая: через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной. Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно.

Лобачевский пришёл к мысли, что такое доказательство невозможно. Утверждение, противоположное аксиоме Евклида, гласит: через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые. Это и есть аксиома Лобачевского.

По мысли Лобачевского, присоединение этого положения к другим основным положениям геометрии приводит к логически безупречным выводам. Система этих выводов и образует новую, неевклидову геометрию.

Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую геометрию, логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям.

Геометрия превратилась в разветвлённую и быстро развивающуюся в разных направлениях совокупность математических теорий, изучающих разные пространства (евклидово, Лобачевского, проективное, римановы и т. д.) и фигуры в этих пространствах.

Источник: https://ggpatl.gomel.by/math/%D0%B8%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F-%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8/

4 этапа развития геометрии

История развития геометрии как науки

  • Контакты
  • Мероприятия
  • Пользователи
  • Памятка

В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.

Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества.

Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э.

, но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными.

Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему.

Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.

Этот процесс привёл, наконец, к качественному скачку. Геометрия превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались. С этого времени начинается второй период развития Геометрии. Известны упоминания систематические изложения Геометрия, среди которых данное в 5 в.

до н. э. Гиппократом Хиосским. Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. «Начала» Евклида.

Здесь Геометрия представлена так, как её в основном понимают и теперь, если ограничиваться элементарной геометрией; это наука о простейших пространственных формах и отношениях, развиваемая в логической последовательности, исходя из явно формулированных основных положений — аксиом и основных пространственных представлений.

Геометрия, развиваемая на тех же основаниях (аксиомах), даже уточнённую и обогащенную как в предмете, так и в методах исследования, называется евклидовой геометрией. Ещё в Греции к ней добавляются новые результаты, возникают новые методы определения площадей и объёмов (Архимед, 3 в. до н. э.), учение о конических сечениях (Аполлоний Пергский, 3 в.

до н. э.), присоединяются начатки тригонометрии (Гиппарх, 2 в. до н. э.) и Геометрия на сфере (Менелай, 1 в. н. э.). Упадок античного общества привёл к сравнительному застою в развитии Геометрия, однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока.

Возрождение наук и искусств в Европе повлекло дальнейший расцвет Геометрии. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в Геометрия метод координат. Метод координат позволил связать Геометрия с развивавшейся тогда алгеброй и зарождающимся анализом.

Применение методов этих наук в Геометрия породило аналитическую Геометрия, а потом и дифференциальную. Геометрия перешла на качественно новую ступень по сравнению с Геометрией древних: в ней рассматриваются уже гораздо более общие фигуры и используются существенно новые методы.

С этого времени начинается третий период развития Геометрии.

Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, Геометрия Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е.

их непрерывные совокупности) и преобразования (понятию «дифференциальная Геометрия» придаётся теперь часто более общий смысл, о чём см. в разделе Современная геометрия). Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии в работах Ж. Дезарга и Б. Паскаля.

Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений Геометрии были даны в 18 — начале 19 вв.

Эйлером для аналитической Геометрии (1748), Монжем для дифференциальной Геометрии (1795), Ж. Понселе для проективной Геометрии (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии.

Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) Геометрия оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.

Четвёртый период в развитии Геометрии открывается построением Н. И. Лобачевским в 1826 новой, неевклидовой Геометрии, называемой теперь Лобачевского геометрией. Независимо от Лобачевского в 1832 ту же Геометрия построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их).

Источник, сущность и значение идей Лобачевского сводятся к следующему. В геометрии Евклида имеется аксиома о параллельных, утверждающая: «через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной».

Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно. Лобачевский пришёл к мысли, что такое доказательство невозможно.

Утверждение, противоположное аксиоме Евклида, гласит: «через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые». Это и есть аксиома Лобачевского.

По мысли Лобачевского, присоединение этого положения к другим основным положениям Геометрия приводит к логически безупречным выводам.

Система этих выводов и образует новую, неевклидову Геометрия Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую Геометрия, логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям. Лобачевский рассматривал свою Геометрия как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование (см. раздел Истолкования геометрии).

Переворот в Геометрия, произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван «Коперником геометрии».

В его идеях были намечены три принципа, определившие новое развитие Геометрия Первый принцип заключается в том, что логически мыслима не одна евклидова Геометрия, но и другие «геометрии».

Второй принцип — это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой Геометрия Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой Геометрия Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой Геометрия, т.к. она определяется логической состоятельностью (непротиворечивостью) этой Геометрия Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая — в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики. Перечисленные общие принципы сыграли важную роль не только в Геометрия, но и в математике вообще, в развитии её аксиоматического метода, в понимании её отношения к действительности.

особенность нового периода в истории Геометрии, начатого Лобачевским, состоит в развитии новых геометрических теорий — новых «геометрий» и в соответствующем обобщении предмета Геометрия; возникает понятие о разного рода «пространствах» (термин «пространство» имеет в науке два смысла: с одной стороны, это обычное реальное пространство, с другой — абстрактное «математическое пространство»). При этом одни теории складывались внутри евклидовой Геометрия в виде её особых глав и лишь потом получали самостоятельное значение. Так складывались проективная, аффинная, конформная Геометрия и др., предметом которых служат свойства фигур, сохраняющиеся при соответствующих (проективных, аффинных, конформных и др.) преобразованиях. Возникло понятие проективного, аффинного и конформного пространств; сама евклидова Геометрия стала рассматриваться в известном смысле как глава проективной Геометрия Др. теории, подобно геометрии Лобачевского, с самого начала строились на основе изменения и обобщения понятий евклидовой Геометрия Так, создавалась, например, многомерная Геометрия; первые относящиеся к ней работы (Геометрия Грасман и А. Кэли, 1844) представляли формальное обобщение обычной аналитической Геометрия с трёх координат на n. Некоторый итог развития всех этих новых «геометрий» подвёл в 1872 Ф. Клейн, указав общий принцип их построения.

Принципиальный шаг был сделан Б. Риманом (лекция 1854, опубликована 1867). Во-первых, он ясно формулировал обобщённое понятие пространства как непрерывной совокупности любых однородных объектов или явлений (см. раздел Обобщение предмета геометрии).

Во-вторых, он ввёл понятие пространства с любым законом измерения расстояний бесконечно малыми шагами (подобно измерению длины линии очень малым масштабом). Отсюда развилась обширная область Геометрия, т. н.

риманова геометрия и её обобщения, нашедшая важные приложения в теории относительности, в механике и др.

В тот же период зародилась топология как учение о тех свойствах фигур, которые зависят лишь от взаимного прикосновения их частей и которые тем самым сохраняются при любых преобразованиях, не нарушающих и не вводящих новых прикосновений, т. е. происходящих без разрывов и склеиваний. В 20 в. топология развилась в самостоятельную дисциплину.

Так Геометрия превратилась в разветвленную и быстро развивающуюся в разных направлениях совокупность математических теорий, изучающих разные пространства (евклидово, Лобачевского, проективное, римановы и т.д.) и фигуры в этих пространствах

Одновременно с развитием новых геометрических теорий велась разработка уже сложившихся областей евклидовой Геометрии — элементарной, аналитической и дифференциальной Геометрии. Вместе с тем в евклидовой Геометрии появились новые направления.

Предмет Геометрии расширился и в том смысле, что расширился круг исследуемых фигур, круг изучаемых их свойств, расширилось само понятие о фигуре. На стыке анализа и Геометрия возникла в 70-х гг. 19 в. общая теория точечных множеств, которая, однако, уже не причисляется к Геометрия, а составляет особую дисциплину (см.

Множеств теория). Фигура стала определяться в Геометрия как множество точек. Развитие Геометрии было тесно связано с глубоким анализом тех свойств пространства, которые лежат в основе евклидовой Геометрии. Иными словами, оно было связано с уточнением оснований самой евклидовой Геометрии. Эта работа привела в конце 19 в. (Д.

Гильберт и др.) к точной формулировке аксиом евклидовой Геометрии, а также других «геометрий».

Авторский проект APXU.RU
Копирование материалов — только при согласовании и указании ссылки на сайт.

Источник: http://www.apxu.ru/article/geoforma/hi/4_etapa_razvitia_geometrii.htm

Refy-free
Добавить комментарий