Инвариантные свойства ортогонального проецирования

Инвариантные свойства ортогонального проецирования (стр. 1 из 5)

Инвариантные свойства ортогонального проецирования

Инвариантные свойства ортогонального проецирования.

1. Проекция точки есть точка

Это очевидно из самого определения проекции как точка пересечения проецирующей прямой с плоскостью.

2. Проекция прямой есть прямая (рис. 1.6)

3. Если точка К принадлежит прямой а, то и проекция этой точки принадлежит проекции прямой (рис. 1.6).

4. Если точка К делит отрезок АD в отношении m: n то и проекция этой точки делит в таком же отношении проекцию этого отрезка (рис. 1.6):

5. Проекция точки пересечения прямых есть точка пересечения проекций этих прямых (рис. 1.7)

6. Проекции параллельных прямых параллельны (рис. 1.8)

7. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.

Исключение составляет многоугольник (плоская ломаная или кривая линия) расположенный в проецирующей (лучевой) плоскости. Такой многоугольник проецируется в прямую линию (рис. 1. 9).

8. Прямая, параллельная направлению проецирования, проецируется в точку (рис. 1.9)

9. Проекция плоской фигуры, параллельной плоскости проекций, конгруэнтна этой фигуре

Проекции центральные и параллельные. Метод Монжа. Точка в системе плоскостей проекций.

ЦЕНТРАЛЬНОЕ ПРОЕЦИРОВАНИЕ!

Представление о центральной проекции можно получить, если изучить изображение, которое дает человеческий глаз.

Для построения центральной проекции объекта нужно между глазом и изучаемым предметом поместить прозрачный экран и отметить на нем точки пересечения лучей, которые идут от глаза человека к отдельным точкам предмета. При соединении всех точек на экране получаем изображение (проекцию) фигуры (рис. 2). Эта проекция называется центральной.

Центральная проекция – это проекция, которая образуется с помощью проецирующихся лучей, проходящих через одну точку.

Изображение предметов при помощи центральной проекции встречается очень часто, особенно для предметов, обладающих большими размерами.

ПАРАЛЛЕЛЬНОЕ ПРОЕЦИРОВАНИЕ!

Параллельная проекция – это такой вид проекции, при построении которого используются параллельные проецирующиеся лучи.

При построении параллельных проекций нужно задать направление проецирующих лучей (рис. 3). На данном примере в качестве направляющего луча выбран луч l. При построении изображений через все точки проводятся прямые, параллельные установленному направлению проецирования, до точки пересечения с плоскостью проекции. Соединяя полученные точки, получаем параллельную проекцию предмета.

Параллельные проекции могут быть ортогональными или косоугольными в зависимости от направления проецирующих лучей.

Проекция называется ортогональной, если проецирующий луч перпендикулярен плоскости.

Проекция называется косоугольной, если угол наклона проецирующих лучей направлен относительно плоскости под углом, отличным от прямого.

Изображение, полученное при помощи параллельной проекции, намного меньше искажено, чем изображение, полученное с помощью центральной проекции.

МЕТОД МОНЖА!

В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций. Одну из плоскостей проекций П1 располагают горизонтально, а вторую П2 — вертикально. П1 — горизонтальная плоскость проекций, П2- фронтальная. Плоскости бесконечны и непрозрачны.

Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций.

Комплексный чертеж точки. Положение точки относительно плоскостей проекций.

Полученный плоский чертеж называется комплексным чертежом. Он представляет собой изображение предмета на нескольких совмещенных плоскостях. Комплексный чертеж, состоящий из двух ортогональных проекций, связанных между собой, называется двухпроекционным. На этом чертеже горизонтальная и фронтальная проекции точки всегда лежат на одной вертикальной линии связи.

Прямые частного положения. Особенности чертежей прямых частного положения.

К прямым частного положения относятся прямые, параллельные одной или двум плоскостям проекций.

Любую линию (прямую или кривую), параллельную плоскости проекций, называют линией уровня. В инженерной графике различают три основные линии уровня: горизонталь, фронталь и профильную линии.

Горизонталью называют любую линию, параллельную горизонтальной плоскости проекций. Фронтальная проекция горизонтали всегда перпендикулярна линиям связи. Любой отрезок горизонтали на горизонтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона горизонтали (прямой) к фронтальной плоскости проекций.

Фронталью называют линию, параллельную фронтальной плоскости проекций (рис.2.3-б). Горизонтальная проекция фронтали всегда перпендикулярна линиям связи. Любой отрезок фронтали на фронтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона фронтали (прямой) к горизонтальной плоскости

Профильной линией называют линию, параллельную профильной плоскости проекций. Горизонтальная и фронтальная проекции профильной линии параллельны линиям связи этих проекций.

Любой отрезок профильной линии (прямой) проецируется на профильную плоскость в истинную величину. На эту же плоскость проецируются в истинную величину и углы наклона профильной прямой к плоскостям проекций П1 и П2.

При задании профильной прямой на комплексном чертеже нужно обязательно указать две точки этой прямой.

Прямые уровня, параллельные двум плоскостям проекций, будут перпендикулярны третьей плоскости проекций. Такие прямые называют проецирующими. Различают три основные проецирующие прямые: горизонтально, фронтально и профильно проецирующие прямые.

Прямые общего положения. Определение длины отрезка прямой общего положения.

Прямой общего положения (рис.2.2) называют прямую, не параллельную ни одной из данных плоскостей проекций. Любой отрезок такой прямой проецируется в данной системе плоскостей проекций искаженно. Искаженно проецируются и углы наклона этой прямой к плоскостям проекций.

Проекции прямого угла.

Решение многих метрических задач требует применения перпендикулярных прямых и плоскостей и основывается на свойства прямоугольного проецирования прямого угла.

Прямой угол проецируется без искажения, если обе стороны параллельны плоскости проекций. Если стороны угла не параллельны плоскости проекции, то угол проецируется с искажением на а эту плоскость проекции.Теорему о проецировании прямого угла мы рассматривали при изучении свойств ортогонального проецирования. Напомним эту теорему.

Теорема:

Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.

Следствие: если прямоугольная проекция угла, одна сторона которого параллельна плоскости проекций, — прямой угол, то проецируемый угол также прямой.

Свойства проекций прямого угла имеют важное значение при решении метрических задач на чертеже, таких, как построение взаимно перпендикулярных прямых и плоскостей определения расстояния между геометрическими фигурами и т.д.

Особенности чертежей плоскостей частного положения. По расположению относительно плоскостей проекций плоскости делят на плоскости общего и частного положения. К плоскостям общего положения относятся плоскости, непараллельные и неперпендикулярные ни одной из плоскостей проекций. На комплексном чертеже (см. рис.

88) проекции элементов, которыми задана плоскость, как правило, занимают общее положение. К плоскостям частного положения относятся плоскости, параллельные или перпендикулярные одной из плоскостей проекций. В свою очередь, плоскости частного положения делятся на проецирующие плоскости и плоскости уровня.

К проецирующим плоскостям относятся плоскости, перпендикулярные одной из плоскостей проекций. Проецирующая плоскость отличается тем, что проекция ее на плоскость проекций, ей перпендикулярную, всегда изображается в виде прямой линии и фигур, лежащих в проецирующей плоскости.

Проекция плоскости, выраженной в прямой, вполне определяет положение плоскости относительно плоскостей проекций. К плоскостям уровня относятся плоскости, параллельные одной из плоскостей проекций.

Их можно считать дважды проецирующими плоскостями, так как у них на комплексном чертеже две проекции имеют вид прямой, расположенной под прямым углом к линии связи, а третья проекция дает изображение всех элементов, лежащих в этой плоскости, в натуральную величину.

Плоскости уровня обычно обозначаются: Г— горизонтальная плоскость уровня; Ф — фронтальная плоскость уровня; U — профильная плоскость уровня. Плоскости уровня отличаются тем, что на плоскости проекций, им перпендикулярную, они проецируются в прямую линию, на которой располагаются точки, прямые и фигуры, расположенные в плоскости уровня.

Эти прямые являются вырожденными проекциями заданной плоскости. На плоскость проекций, параллельную заданной плоскости, все изображения этой плоскости проецируются без искажений, т. е. в натуральную величину. Две плоскости в пространстве могут быть параллельными или пересекаться. Параллельными будут плоскости, если одна из них задана пересекающимися прямыми, параллельными пересекающимся, задающим вторую плоскость; Если плоскости пересекаются, то линия их пересечения — прямая. Плоскости, перпендикулярные между собой, представляют случай их пересечения, когда угол между плоскостями составляет 90°.

Проекционные свойства плоских кривых линий. Кривые второго порядка

1. Секущая m к кривой l проецируется в секущую m1 к проекции l1.

2. Касательная t к кривой l проецируется в касательную t1 к проекции l1.

Источник: https://mirznanii.com/a/43081/invariantnye-svoystva-ortogonalnogo-proetsirovaniya

Прямоугольное (ортогональное) проецирование. Инвариантные свойства параллельного проецирования

Инвариантные свойства ортогонального проецирования

Инвариантные свойства параллельного проецирования

Геометрические фигуры проецируются на плоскость проекций, в общем случае, с искажением. Характер искажений зависит от аппарата проецирования и положения проецируемой фигуры относительно плоскости проекций.

В частности, при параллельном проецировании нарушаются метрические характеристики геометрических фигур (искажаются линейные и угловые величины). Некоторые свойства фигуры сохраняются на ее проекции.

Сохраняющиеся в проекции свойства фигуры называются независимыми или ИНВАРИАНТНЫМИ. Эти инвариантные свойства часто называют сокращенно: инварианты.

Инварианты параллельного проецирования

1.Проекция точки есть точка (рис. 1; рис.2)

2.Проекция прямой есть прямая (рис. 1; рис.2)

*

3. Проекция точки, принадлежащей прямой, принадлежит проекции.

этой прямой (рис. 1; рис.2)

4.Проекция точки пересечения прямых определяется пересечением проекций этих прямых (рис. 3)

5.Проекции взаимно параллельных прямых взаимно параллельны (рис. 4)

6.Отношение длин отрезков взаимно параллельных прямых равно отношению длин их проекций (рис. 4)

СЛЕДСТВИЕ: если отрезок прямой делится точкой в каком-либо отношении, то проекция отрезка делится проекцией этой точки в том же отношении (рис. 5)

7. Плоская фигура, параллельная плоскости проекций, проецируется на эту плоскость в конгруэнтную фигуру (рис. 6)

Частный случай параллельного проецирования, при котором напраление проецирования перпендикулярно плоскости проекций (рис. 7)

В дальнейшем безоговорочно используется ортогональное проецирование.

В ортогональном проецировании сохраняются все свойства параллельного проецирования. Кроме того, для ортогонального проецирования справедлива теорема о проецировании прямого угла (смотри тему №6) и применим способ определений расстояния между точками (т.е. длины отрезка, смотри тему №3), называемый способом прямоугольного треугольника.

БОЛЕЕ ПОДРОБНО…

Положение предмета в пространстве определяют четыре его точки, не лежащие в одной плоскости. Изображение пространственного предмета на чертеже сводится к построению проекций множества точек этого предмета на плоскости R (называемой плоскостью проекций) при помощи прямых линий (проецирующих лучей), проходящих через точки предмета и направленных к центру проецирования S.

Однако, чтобы построить проекцию предмета, не обязательно строить все его точки. Достаточно найти лишь проекции характерных точек (вершин, ребер и т.п.), которые затем соединить соответствующей линией.

Проецирующие лучи в совокупности образуют проецирующую поверхность. Так, при проецировании прямой АВ проецирующей поверхностью является плоскость АВba (рис. ).

Линия пересечения ab проецирующей плоскости с плоскостью R представляет собой проекцию прямой AB, которая слагается из проекций отдельных ее точек.

Проекция подобна тени, отброшенной от предмета, освещенного лампой или солнцем.

При проецировании кривой линии в первом случае проецирующие лучи образуют коническую поверхность с вершиной в точке S, получается коническое (перспективное) изображение кривой (рис. 2).

Во втором случае конус проецирующих лучей превращается в цилиндр и коническое изображение переходит вцилиндрическое (параллельное) (рис. 2).

Проекция кривой линии рассматривается при этом как линия пересечения проецирующей поверхности с плоскостью R.

В перспективе предмет изображается таким, каким он представляется глазу наблюдателя. Хрусталик глаза является центром проецирования. Каждому из нас знакомо следующее явление: если смотреть вдоль полотна железной дороги, нам кажется, что рельсы как бы сближаются между собой и на горизонте сходятся в одну точку (центр), а опоры, расположенные вдоль путей, уменьшаются по мере удаления.

Параллельное проецирование — частный случай перспективы. Суть параллельного проецирования заключается в следующем: если условно удалить центр проецирования в бесконечность, то проецирующие лучи можно считать параллельными.

Так, чтобы построить параллельную проекцию треугольника ABC (рис. ), нужно задать: R — плоскость проекций (не параллельную и не совпадающую с направлением проецирующих лучей); S — направление проецирующих лучей (направление проецирования).

Далее, через характерные точки предмета проводят проецирующие лучи Аа, Вb и Сс параллельно направлению проецирования, а затем находят точки a, b и с их пересечения с плоскостью R. Эти точки — искомые параллельные проекции точек А, В и С заданного треугольника.

Проекция abc — линия пересечения проецирующей призматической поверхности с плоскостью R.

Форма и размеры параллельной проекции какого-либо предмета при заданном направлении проецирования зависят только от выбора направления плоскости проекций и не зависят от ее удаления от предмета.

Треугольник, расположенный в плоскости R1, параллельной плоскости проекций, проецируется равным заданному. В этом случае ab = AB, bc = BC, ac = AC.

В зависимости от угла наклона проецирующего луча к плоскости проекций параллельное проецирование делится на два вида: прямоугольное и косоугольное.

ПРЯМОУГОЛЬНЫМ(или ортогональным) проецирование называется в том случае, когда направление проецирования выбрано перпендикулярным плоскости проекций. В другом случае оно называется КОСОУГОЛЬНЫМ.

При прямоугольном проецировании (рис. 7) величина коэффициента искажения не может превышать единицы.

В косоугольных проекциях (рис. 5) коэффициент искажения (К = ab/AB) данного отрезка АВ может принимать любые числовые значения в зависимости от наклона отрезка и проецирующих лучей к плоскости проекций. В частности, если направление отрезка совпадает с направлением проецирования, то проекцией этого отрезка будет точка, а коэффициент искажения равен нулю.

В параллельном проецировании сохраняются основные свойстваперспективы, а именно:

1) проекция точки есть точка;

2) проекция прямой в общем случае будет прямая;

3) каждой точке, принадлежащей какой-либо линии, соответствует проекция этой точки на проекции данной линии.

Кроме того, параллельное проецирование имеет еще ряд (только ему присущих) свойств:

4) если точка лежит на отрезке прямой, то проекция этой точки делит проекцию отрезка в том же отношении, в каком

точка делит отрезок, т.е. AC/CB = ас/cb (рис. 5);

5) проекцией пересекающихся отрезков будут также пересекающиеся отрезки, а точка их пересечения будет проекцией точки пересечения данных отрезков (рис. 3);

6) проекции параллельных отрезков параллельны, одного направления, а их отношение равно отношению длин отрезков, т.е. abççcd и AB/CD = ab/cd (рис. 4);

7) при прямоугольном проецировании прямой угол проецируется прямым углом только в том случае, если одна из его сторон параллельна плоскости проекций, а вторая не является проецирующим лучом(теорема о проецировании прямого угла).

Источник: https://studopedia.su/19_99983_pryamougolnoe-ortogonalnoe-proetsirovanie.html

Свойства ортогонального проецирования

Инвариантные свойства ортогонального проецирования

Свойства параллельного проецирования

При параллельном проецировании сохраняются все свойства центрального проецирования, а также возникают следующие новые свойства.

1. Проекции параллельных прямых параллельны между собой, т.е., если а ½½ b, то a1 ½½ b1. Пусть отрезки АВ и DE параллельны (рис. 1.

3), тогда проецирующие плоскости AA1BB1 и DD1E1Eбудут также параллельны.

Следовательно, линии A1B1 и D1E1 пересечения этих плоскостей с П1 будут параллельны.

2.Отношение отрезков, принадлежащих параллельным прямым или одной прямой, равно отношению проекций этих отрезков, т.е., если AB ½½ DE, то D AB / DE = D A1B1 / D1E1

3. При параллельном перемещении плоскости проекций проекция фигуры не изменяется. Если П1П2, то D A1B1C1 = D A2B2C2 (рис.1.4).

Рис.1.4 Рис.1.5

Свойства ортогонального проецирования

Наряду со свойствами параллельного (косоугольного) проецирования ортогональное проецирование имеет следующие свойства.

1. Отрезок прямой в общем случае равен гипотенузе прямоугольного треугольника, у которого один катет равен его проекции на данную плоскость проекции, а второй — разности расстоянии концов отрезка до этой плоскости (рис.1.5).

2. Любой отрезок прямой и плоская фигура, параллельные плоскости проекций, проецируются на эту плоскость без искажения (рис.1.

6), например, если АВ ½½ П1, то ½ A1B1 ½ = ½ AB ½ ; DABC ½½ П1, то D A1B1C1 = D ABC.

Рис.1.6 Рис.1.7

3. Проекция любой фигуры (плоской фигуры, отрезка прямой и т.д.) не может быть больше самой фигуры (как следствие п. 1 и 2).

4. Ортогональные проекции двух взаимно перпендикулярных прямых, одна из которых параллельна плоскости проекций, а другая не перпендикулярна ей, взаимно перпендикулярны, т.е., если a b, и a ½½ П1, то a1 b1 (рис.1.7).

Пусть дано a b. Построим проекцию a b на П1. AA1 П1 (как проецирующий луч), следовательно, плоскость Г (AA1 Ç b) также перпендикулярна П1.

Прямая а перпендикулярна плоскости Г, так как она перпендикулярна двум прямым AA1 и b, принадлежащим плоскости Г.

Но a1 ½½ a (a ½½ П1) и, следовательно, a Г, откуда A1 перпендикулярна любой прямой плоскости Г, в том числе и b1. Отсюда справедливо, что a1 b1.

Это доказательство относится как к пересекающимся прямым, так и к скрещивающимся. Как видно из чертежа, если с Ì Г, а Г Q , то c1 a1.

Ортогональное проецирование

Направление проецирования перпендикулярно (ортогонально) плоскости проекций S π1 (рис. 1.11). Ортогональное проецирование является частным случаем параллельного проецирования.

Ортогональное проецирование находит широкое применение в инженерной практике для изображения геометрических фигур на плоскости, т. к. обладает рядом преимуществ перед центральным и параллельным (косоугольным) проецированием к которым можно отнести:

.

Рис. 1.10. Пример инвариантного свойства 9

.

Рис. 1.11. Ортогональная проекция прямого угла

а) простоту графических построений для определения ортогональных проекций точек;

б) возможность при определенных условиях сохранить на проекциях форму и размеры проецируемой фигуры.

Указанные преимущества обеспечили широкое применение ортогонального проецирования в технике, в частности для составления машиностроительных чертежей.

Для ортогонального проецирования справедливы все девять инвариантных свойств, рассмотренных выше. Кроме того, необходимо отметить еще одно, десятое, инвариантное свойство, которое справедливо только для ортогонального проецирования.

10. Если хотя бы одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость проекций прямой угол проецируется без искажения (рис. 1.11)

На рис. 1.11 показан прямой угол АВD, обе стороны которого параллельны плоскости проекций π1. По инвариантному свойству 9 этот угол проецируется на плоскость π1 без искажения, т. е. А1В1D1=90°.

Возьмем на проецирующем луче DD1 произвольную точку С, тогда полученный АВС будет прямым, т. к. АВ ВВ1DD1.

Проекцией этого прямого угла АВС, у которого только одна сторона АВ параллельна плоскости проекций π1, будет прямой угол А1В1D1.

Эпюр Монжа (комплексный чертеж) или ортогональные проекции.

Суть метода ортогональных (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, которые затем совмещают с плоскостью чертежа.

Проецирование на три взаимно перпендикулярные плоскости проекции
Существует множество деталей, информацию о форме кото­рых невозможно передать двумя проекциями чертежа (рис. 75). Для того чтобы информация о сложной форме детали была представлена достаточно полно, используют проецирование на три взаимно перпендикулярные плоскости проекции: фронталь­ную — V, горизонтальную — H и профильную — W (читается «дубль вэ»). Система плоскостей проекций представляет собой трехгран­ный угол с вершиной в точке О. Пересечения плоскостей трех­гранного угла образуют прямые линии — оси проекций (OX, OY, OZ) (рис. 76). В трехгранный угол помещают предмет так, чтобы его формо­образующая грань и основание были бы параллельны соответст­венно фронтальной и горизонтальной плоскостям проекций. За­тем через все точки предмета проводят проецирующие лучи, перпендикулярные всем трем плоскостям проекций, на которых получают фронтальную, горизонтальную и профильную проекции предмета. После проецирования предмет удаляют из трехгран­ного угла, а затем горизонтальную и профильную плоскости про­екций поворачивают на 90* соответственно вокруг осей ОХ и OZ до совмещения с фронтальной плоскостью проекции и получают чертеж детали, содержащий три проекции. Рис. 75. Проецирование на две плоскости проекций не всегда дает полное представление о форме предмета Рис. 76. Проецирование на три взаимно перпендикулярные плоскости проекций   Три проекции чертежа взаимосвязаны друг с другом. Фрон­тальная и горизонтальная проекции сохраняют проекционную связь изображений, т. е. устанавливаются проекционные связи и между фронтальной и горизонтальной, фронтальной и профиль­ной, а также горизонтальной и профильной проекциями (см. рис. 76). Линии проекционной связи определяют местоположение каждой проекции на поле чертежа. Во миогнх странах мира принята другая система прямо- угольного проецирования на три взаимно перпендикулярные плоскости проекций, которая условно называется «амери­канская» (см. Приложение 3). Основное eе отличие состоит в том, что по-иному, относительно проецируемого объекта, в пространстве располагается трехгранный угол и в других направлениях разворачива­ются плоскости проекций. Поэтому горизонтальная проекция оказывается над фронтальной, а профильная проекция — справа от фронтальной. Форма большинства предметов представляет собой сочетание различных геометрических тел или их частей. Следовательно, для чтения и выполнения чертежей нужно знать, как изображаются геометрические тела в системе трех проекций на производстве (табл. 7). (Чертежи, содержащие три проекции, называются ком­плексными чертежами.) 7. Комплексные и производственные чертежи деталей простой геометрической формы

Частные положения прямой в пространстве

.

Рис. 2.1. Прямые общего положения

На рис. 2.1 показаны прямые общего положения, т. е. прямые, произвольно расположенные относительно плоскостей проекций.

Особый интерес представляют прямые частного положения, т. е. прямые, расположенные определенным образом относительно плоскостей проекций: параллельные, перпендикулярные и принадлежащие плоскостям проекций.

Рассмотрим изображение на эпюре и отметим основные свойства этих прямых.

Прямые, параллельные плоскостям проекций.

1. Горизонтальная прямая h (рис. 2.2) – горизонталь

Горизонтальная прямая – это прямая, параллельная горизонтальной плоскости проекций π1.

Так как все точки этой прямой равноудалены от плоскости проекций π1 (координаты Z всех точек прямой одинаковы), то фронтальная и профильная проекции прямой соответственно параллельны координатным осям Х и Y. На плоскость проекций π1 проецируются без искажения отрезок прямой АВ (А1В1=АВ) и углы наклона прямой к плоскостям проекций π2 и π3 (углы β0 и γ0).

2. Фронтальная прямая f (рис. 2.3) – фронталь

Фронтальная прямая – это прямая параллельная фронтальной плоскости проекций π2.

Так как все точки этой прямой равноудалены от плоскости проекций π2 (координаты Y всех точек прямой одинаковы), то горизонтальная и профильная проекции прямой соответственно параллельны координатным осям Х и Z.

На плоскость проекций π2 проецируются без искажений отрезок этой прямой CD (C2D2+CD) и углы наклона прямой к плоскостям проекций π1 и π3 (углы α 0 и γ 0)

.

Рис. 2.2. Горизонтальная прямая

3. Профильная прямая p (рис. 2.4)

Профильная прямая – это прямая, параллельная профильной плоскости проекций π3 .

Так как все точки этой прямой равноудалены от плоскости проекций π3 (координаты Х всех точек прямой одинаковы), то горизонтальная и фронтальная проекции прямой соответственно параллельны координатным осям Y и Z.

На плоскость проекций π3 проецируется без искажения отрезок этой прямой EF (E3F3=EF)и углы наклона прямой к плоскостям проекций π1 и π2 (углы α 0 и β 0).

Прямые, принадлежащие плоскостям проекций

Прямые, принадлежащие плоскостям проекций, являются частным случаем горизонтальных, фронтальных и профильных прямых. Характерным признаком для эпюра, на котором изображена подобная прямая будет принадлежность одной из проекций прямой соответствующей оси.

.

Рис. 2.3. Фронтальная прямая

.

Рис. 2.4. Профильная прямая

На рис. 2.5, 2.6, 2.7 показаны прямые, принадлежащие соответственно горизонтальной плоскости проекций (частный случай горизонтальной прямой Z=0), фронтальной плоскости проекций (частный случай фронтальной прямой Y=0) и профильной плоскости проекций (частный случай профильной прямой Х=0).

.

Рис. 2.5. Прямая, принадлежащая горизонтальной плоскости проекций

.

Рис. 2.6. Прямая, принадлежащая фронтальной плоскости проекций

.

Рис. 2.7. Прямая, принадлежащая профильной плоскости проекций

Прямые, перпендикулярные плоскостям проекций.

Проецирующие прямые

На рис. 2.8 и 2.9 показаны прямые, перпендикулярные соответственно горизонтальной и фронтальной плоскостям проекций

Прямая перпендикулярная горизонтальной плоскости проекций – горизонтально-проецирующая прямая. Такая прямая проецируется на плоскость π1 в точку; ее фронтальная проекция перпендикулярна оси Х (рис. 2.8).

Прямая, перпендикулярная фронтальной плоскости проекций – фронтально-проецирующая прямая. Эта прямая проецируется на плоскость π2 в точку, а ее горизонтальная проекция перпендикулярна оси Х (рис. 2.9).

Прямая, перпендикулярная профильной плоскости проекций – профильно-проецирующая прямая. Эта прямая проецируется на плоскость π3 в точку, а ее фронтальная проекция перпендикулярна оси Z.

Эти прямые являются частными случаями фронтали и горизонтали.

.

Рис. 2.8. Прямая, перпендикулярная горизонтальной плоскости проекций

.

Рис. 2.9. Прямая, перпендикулярная фронтальной плоскости проекций

.

Рис. 2.10. Прямая, перпендикулярная профильной плоскости проекций

Способ прямоугольного треугольника

Способ прямоугольного треугольника применяется в задачах, в которых требуется определить натуральную величину отрезка, разность координат концов отрезка, углы наклона его к плоскостям проекций и так далее. Посмотрим на способ прямоугольного треугольника как частный случай замены плоскостей проекций.

Это тот случай определения длины отрезка, когда один из его концов принадлежит плоскости проекций, а новая плоскость проекций проводится через сам отрезок (Рис.58). На чертеже это новая ось, совпадающая с проекцией отрезка. При этом искомая величина отрезка окажется равной гипотенузе прямоугольного треугольника, один из катетов которого есть проекция отрезка.

Помимо длины треугольник содержит в себе и другие сведения об отрезке.

Точно такой же треугольник с точно такими же сведениями об отрезке можно получить без операции проецирования и даже – на безосном комплексном чертеже. Применим одну из проекций отрезка за катет прямоугольного треугольника. Второй катет равен разности координат концов отрезка в направлении, в каком была задана выбранная проекция. Что имеем в итоге:

1) Длина отрезка равна гипотенузе прямоугольного треугольника, один катет которого – это проекция отрезка, второй катет – равен разности координат концов отрезка, измеренной в направлении получения использованной проекции отрезка.

2) Угол наклона отрезка к плоскости проекций равен углу между гипотенузой и проекцией отрезка на той же плоскости.

Пример (Рис.59). Определить длину отрезка и угол его наклона к плоскости .

При определении длины отрезка за катет прямоугольного треугольника может быть выбрана любая проекция отрезка. Другое дело, если определяется угол наклона отрезка к той или иной плоскости проекций. Здесь выбор падает на проекцию отрезка, принадлежащую именно той же плоскости проекций.

Решение:

Строим прямоугольный треугольник, приняв за катет фронтальную проекцию отрезка . Второй катет по длине равен разности координат точек и в направлении мнимой в данном случае оси y. На чертеже эта разница берется на другой плоскости проекций: на плоскости . Из построенного треугольника делаем выводы:

1) ,

Точка на прямой.

Комплексный чертеж точки, находящейся на прямой. Точку на прямой можно рассматривать как одну из точек, принадлежащих этой прямой. Пусть дан отрезок АВ и его проекции А1В1 и А2В2. На отрезке АВ лежит точка С, требуется определить ее проекции. Так как точка принадлежит отрезку, то ее проекции будут лежать на одноименных проекциях отрезка (фиг.211,а).

Проведем через точку С проектирующие прямые, получим горизонтальную проекцию С1 точки С на горизонтальной проекции А1В1 отрезка АВ и фронтальную проекцию С2 на фронтальной проекции А2В2 (фиг.211,б).

Рассматривая комплексный чертеж точки С, замечаем, что обе проекции С1и С2 лежат на одной вертикальной линии связи, как проекции одной и той же точки. Если одна (фиг.211,в) или две проекции (фиг.211,г) точки не лежат на одноименных проекциях отрезка, то точка не лежит на отрезке.

Следовательно, для того чтобы точка лежала на прямой, необходимо, чтобы проекции этой точки не только лежали на одноименных проекциях прямой, но и находились на одной линии связи.

Это правило имеет исключение в том случае, когда точка лежит на горизонтальной прямой, данной фронтальной и профильной проекциями, на фронтальной прямой, данной горизонтальной и профильной проекциями, или профильной прямой, данной горизонтальной и фронтальной проекциями.

Тогда, для того чтобы определить, лежит ли точка на прямой, необходимо построить третью проекцию. На (фиг.

212) видно, что точка Е не лежит на отрезке АВ, так как профильная проекция Е3 точки Е не лежит на профильной проекции А3В3 отрезка АВ; точка F лежит на отрезке АВ, так как не только ее горизонтальная F1 фронтальная F2, но и профильная F3проекции лежат на одноименных проекциях отрезка АВ.

Взаимное расположение двух прямых в пространстве
Взаимное расположение двух прямых и пространстве характеризуется следующими тремя возможностями. 1. Прямые лежат в одной плоскости и не имеют общих точек — параллельные прямые. 2. Прямые лежат и одной плоскости и имеют одну общую точку — прямые пересекаются. 3. В пространстве две прямые могут быть расположены еще так, что не лежат ни в одной плоскости. Такие прямые называются скрещивающимися (не пересекаются и не параллельны). Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая пересекает эту плоскость и точке, которая не лежит на первой прямой, то эти прямые скрещиваются. На рис. 26 прямая a лежит в плоскости , а прямая с пересекает в точке N. Прямые a и с — скрещивающиеся. Теорема. Через каждую из двух скрещивающихся прямых проходит только одна плоскость, параллельная другой прямой. На рис. 26 прямые a и b скрещиваются. Черен прямую а проведена плоскость || b (в плоскости указана прямая a1 || b). Примеры скрещивающихся прямых: трамвайный рельс и троллейбусный провод по пересекающейся улице, нeпересекающиеся и непараллельные ребра пирамид или призм и пр. Все три случая можно видеть еще на примере прямых, по которым встречаются стены и потолок или стены и пол комнаты.

Плоскость – одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскость обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Некоторые характеристические свойства плоскости:

1. Плоскость есть поверхность, содержащая полностью каждую прямую, соединяющую любые ее точки;

2. Плоскость есть множество точек, равноотстоящих от двух заданных точек.

Плоскость в линейной алгебре — поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением 1-ой степени. Общее уравнение плоскости:

Ax+By+Cz+D=0,

где А, В, С, и D — постоянные, причем А, В и С одновременно не равны нулю.

СПОСОБЫ ГРАФИЧЕСКОГО ЗАДАНИЯ ПЛОСКОСТЕЙ

Положение плоскости в пространстве можно определить:

Двумя параллельными прямыми

а) модель б) эпюр
Рисунок 5.4. Плоскость заданная двумя параллельными прямыми линиями

До сих пор мы рассматривали ортогональные проекции точки на комплексном чертеже. Теперь рассмотрим комплексный чертёж линии. Комплексный чертёж линии представляет собой совокупность проекций точек этой линии на две или три плоскости проекций Выполнении графических работ Виды проецирования, типы задач , графические задания Сборочный чертеж

Плоскости уровня.

1. Плоскость λ параллельна плоскости П1. Такую плоскость называют горизонтальной. Фронтальная и профильная проекции параллельны осям х иу (фиг.225,а).

2. Плоскость μ параллельна плоскости П2. Такую плоскость называют фронтальной. Горизонтальная и профильная проекции параллельны осям х иz (фиг.225,б).
3. Плоскость θ параллельна плоскости П3. Такую плоскость называют профильной.

Фронтальная и горизонтальная проекции параллельны осям z иу (фиг.225,в). Плоскости уровня называют также дважды проектирующими. Плоскости уровня принято изображать их проекциями.

Особенность этих плоскостей состоит в том, что прямая, кривая или фигура, лежащие в этих плоскостях, проектируются на параллельную ей плоскость проекций в натуральную величину, а на две другие — отрезками, сливающимися с соответствующими проекциями плоскости.

Например: отрезок АВ расположен в горизонтальной плоскости λ; в этом случае его горизонтальная проекция равна натуральной величине отрезка (фиг.226,а).

Источник: https://megaobuchalka.ru/7/29999.html

Refy-free
Добавить комментарий